#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Phospholipids Trigger
Capsular Enlargement during Interactions with Amoebae and
Macrophages


A remarkable aspect of the interaction of Cryptococcus

neoformans
with mammalian hosts is a consistent increase in capsule

volume. Given that many aspects of the interaction of C.

neoformans
with macrophages are also observed with amoebae, we

hypothesized that the capsule enlargement phenomenon also had a protozoan

parallel. Incubation of C. neoformans with Acanthamoeba

castellanii
resulted in C. neoformans capsular

enlargement. The phenomenon required contact between fungal and protozoan cells

but did not require amoeba viability. Analysis of amoebae extracts showed that

the likely stimuli for capsule enlargement were protozoan polar lipids. Extracts

from macrophages and mammalian serum also triggered cryptococcal capsular

enlargement. C. neoformans capsule enlargement required

expression of fungal phospholipase B, but not phospholipase C. Purified

phospholipids, in particular, phosphatidylcholine, and derived molecules

triggered capsular enlargement with the subsequent formation of giant cells.

These results implicate phospholipids as a trigger for both C.

neoformans
capsule enlargement in vivo and

exopolysaccharide production. The observation that the incubation of C.

neoformans
with phospholipids led to the formation of giant cells

provides the means to generate these enigmatic cells in vitro.

Protozoan- or mammalian-derived polar lipids could represent a danger signal for

C. neoformans that triggers capsular enlargement as a

non-specific defense mechanism against potential predatory cells. Hence,

phospholipids are the first host-derived molecules identified to trigger

capsular enlargement. The parallels apparent in the capsular response of

C. neoformans to both amoebae and macrophages provide

additional support for the notion that certain aspects of cryptococcal virulence

emerged as a consequence of environmental interactions with other microorganisms

such as protists.


Vyšlo v časopise: Phospholipids Trigger Capsular Enlargement during Interactions with Amoebae and Macrophages. PLoS Pathog 7(5): e32767. doi:10.1371/journal.ppat.1002047
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002047

Souhrn

A remarkable aspect of the interaction of Cryptococcus

neoformans
with mammalian hosts is a consistent increase in capsule

volume. Given that many aspects of the interaction of C.

neoformans
with macrophages are also observed with amoebae, we

hypothesized that the capsule enlargement phenomenon also had a protozoan

parallel. Incubation of C. neoformans with Acanthamoeba

castellanii
resulted in C. neoformans capsular

enlargement. The phenomenon required contact between fungal and protozoan cells

but did not require amoeba viability. Analysis of amoebae extracts showed that

the likely stimuli for capsule enlargement were protozoan polar lipids. Extracts

from macrophages and mammalian serum also triggered cryptococcal capsular

enlargement. C. neoformans capsule enlargement required

expression of fungal phospholipase B, but not phospholipase C. Purified

phospholipids, in particular, phosphatidylcholine, and derived molecules

triggered capsular enlargement with the subsequent formation of giant cells.

These results implicate phospholipids as a trigger for both C.

neoformans
capsule enlargement in vivo and

exopolysaccharide production. The observation that the incubation of C.

neoformans
with phospholipids led to the formation of giant cells

provides the means to generate these enigmatic cells in vitro.

Protozoan- or mammalian-derived polar lipids could represent a danger signal for

C. neoformans that triggers capsular enlargement as a

non-specific defense mechanism against potential predatory cells. Hence,

phospholipids are the first host-derived molecules identified to trigger

capsular enlargement. The parallels apparent in the capsular response of

C. neoformans to both amoebae and macrophages provide

additional support for the notion that certain aspects of cryptococcal virulence

emerged as a consequence of environmental interactions with other microorganisms

such as protists.


Zdroje

1. MaHMayRC

2009

Virulence in Cryptococcus species.

Adv Appl Microbiol

67

131

190

2. DoeringTL

2009

How sweet it is! Cell wall biogenesis and polysaccharide capsule

formation in Cryptococcus neoformans.

Annu Rev Microbiol

63

223

247

3. ZaragozaORodriguesMLDeJMFrasesSDadachovaE

2009

The capsule of the fungal pathogen Cryptococcus

neoformans.

Adv Appl Microbiol

68

133

216

4. ZaragozaOChrismanCJCastelliMVFrasesSCuenca-EstrellaM

2008

Capsule enlargement in Cryptococcus neoformans

confers resistance to oxidative stress suggesting a mechanism for

intracellular survival.

Cell Microbiol

10

2043

2057

5. AlspaughJAPukkila-WorleyRHarashimaTCavalloLMFunnellD

2002

Adenylyl cyclase functions downstream of the Galpha protein Gpa1

and controls mating and pathogenicity of Cryptococcus

neoformans.

Eukaryot Cell

1

75

84

6. ZaragozaOGarcia-RodasRNosanchukJDCuenca-EstrellaMRodriguez-TudelaJL

2010

Fungal cell gigantism during mammalian infection.

PLoS Pathog

6

e1000945

7. OkagakiLHStrainAKNielsenJNCharlierCBaltesNJ

2010

Cryptococcal cell morphology affects host cell interactions and

pathogenicity.

PLoS Pathog

6

e1000953

8. ZaragozaOFriesBCCasadevallA

2003

Induction of capsule growth in Cryptococcus

neoformans by mammalian serum and CO(2).

Infect Immun

71

6155

6164

9. ZaragozaOTabordaCPCasadevallA

2003

The efficacy of complement-mediated phagocytosis of

Cryptococcus neoformans is dependent on the location of

C3 in the polysaccharide capsule and involves both direct and indirect

C3-mediated interactions.

Eur J Immunol

33

1957

1967

10. FeldmesserMKressYNovikoffPCasadevallA

2000

Cryptococcus neoformans is a facultative

intracellular pathogen in murine pulmonary infection.

Infect Immun

68

4225

4237

11. TuckerSCCasadevallA

2002

Replication of Cryptococcus neoformans in

macrophages is accompanied by phagosomal permeabilization and accumulation

of vesicles containing polysaccharide in the cytoplasm.

Proc Natl Acad Sci

99

3165

3170

12. BuntingLANeilsonJBBulmerGS

1979

Cryptococcus neoformans: gastronomic delight of

a soil ameba.

Sabouraudia

17

225

232

13. SteenbergenJNShumanHACasadevallA

2001

Cryptococcus neoformans interactions with

amoebae suggest an explanation for its virulence and intracellular

pathogenic strategy in macrophages.

Proc Natl Acad Sci

18

15245

15250

14. BidochkaMJClarkDCLewisMWKeyhaniNO

2010

Could insect phagocytic avoidance by entomogenous fungi have

evolved via selection against soil amoeboid predators?

Microbiology

156

2164

2171

15. FragerSZChrismanCJShakkedRCasadevallA

2010

Paramecium species ingest and kill the cells of the human

pathogenic fungus Cryptococcus neoformans.

Med Mycol

48

775

779

16. CasadevallANosanchukJDSteenbergenJN

2003

‘Ready-made’ virulence and ‘dual-use’

virulence factors in pathogenic enviromental fungi - the

Cryptococcus neoformans paradigm.

Curr Opin Microbiol

112

1164

1175

17. SteenbergenJNCasadevallA

2003

The origin and maintenance of virulence for the human pathogenic

fungus Cryptococcus neoformans.

Microbes Infect

5

667

675

18. CasadevallAPirofskiLA

2007

Accidental virulence, cryptic pathogenesis, martians, lost hosts,

and the pathogenicity of environmental microbes.

Eukaryot Cell

6

2169

2174

19. AlvarezMCasadevallA

2006

Phagosome fusion and extrusion, and host cell survival following

Cryptococcus neoformans phagocytosis by

macrophages.

Curr Biol

16

2161

2165

20. MaHCroudaceJELammasDAMayRC

2006

Expulsion of live pathogenic yeast by

macrophages.

Curr Biol

16

2156

2160

21. ChrismanCJAlvarezMCasadevallA

2010

Phagocytosis and non-lytic phagocytosis of Cryptococcus

neoformans by, and from, Acanthamoeba

castellanii.

Appl Environ Microbiol

76

6056

6062

22. ZaragozaOCasadevallA

2004

Experimental modulation of capsule size in Cryptococcus

neoformans.

Biol Proced Online

6

10

15

10.1251/bpo68 [doi]

23. FolchJLeesMSloaneS

1957

A simple method for the isolation and purification of total

lipides from animal tissues.

J Biol Chem

226

497

509

24. CoxGMMcDadeHCChenSCTuckerSCGottfredssonM

2001

Extracellular phospholipase activity is a virulence factor for

Cryptococcus neoformans.

Mol Microbiol

39

166

175

25. NoverrMCErb-DownwardJRHuffnagleGB

2003

Production of eicosanoids and other oxylipins by pathogenic

eukaryotic microbes.

Clin Microbiol Rev

16

517

533

26. ChenSCWrightLCSantangeloRTMullerMMoranVR

1997

Identification of extracellular phospholipase B,

lysophospholipase, and acyltransferase produced by Cryptococcus

neoformans.

Infect Immun

65

405

411

27. GanendrenRWidmerFSinghalVWilsonCSorrellT

2004

In vitro antifungal activities of inhibitors of phospholipases

from the fungal pathogen Cryptococcus

neoformans.

Antimicrob Agents Chemother

48

1561

1569

28. ChenSCWrightLCGoldingJCSorrellTC

2000

Purification and characterization of secretory phospholipase B,

lysophospholipase and lysophospholipase/transacylase from a virulent strain

of the pathogenic fungus Cryptococcus neoformans.

Biochem J

347

431

439

29. GrangerDLPerfectJRDurackDT

1985

Virulence of Cryptococcus neoformans. Regulation

of capsule synthesis by carbon dioxide.

J Clin Invest

76

508

516

30. VartivarianSEAnaissieEJCowartRESpriggHATinglerMJ

1993

Regulation of cryptococcal capsular polysaccharide by

iron.

J Infect Dis

167

186

190

31. FeldmesserMKressYCasadevallA

2001

Dynamic changes in the morphology of Cryptococcus

neoformans during murine pulmonary infection.

Microbiology

147

2355

2365

32. RuizANeilsonJBBulmerGS

1982

Control of Cryptococcus neoformans in nature by

biotic factors.

Sabouraudia

20

21

29

33. ShahidiFWanasundaraPKJDP

2008

Extraction and analysis of lipids.

AkohCCMinDB

Food Lipids: Chemistry, Nutrition and Biotechnology

Boca Raton, Fl

CRC Press

125

156

34. ChristieWW

1993

Preparation of lipid extracts from tissues.

ChristieWW

Advances in Lipid Methodology

Dundee

Oily Press

195

213

35. FrasesSNimrichterLVianaNBNakouziACasadevallA

2008

Cryptococcus neoformans capsular polysaccharide

and exopolysaccharide fractions manifest physical, chemical, and antigenic

differences.

Eukaryot Cell

7

319

327

36. FallbrookATurenneSDMamaliasNKishSJRossBM

1999

Phosphatidylcholine and phosphatidylethanolamine metabolites may

regulate brain phospholipid catabolism via inhibition of lysophospholipase

activity.

Brain Res

834

207

210

S0006-8993(99)01570-X [pii]

37. CharlierCChretienFBaudrimontMMordeletELortholaryO

2005

Capsule structure changes associated with Cryptococcus

neoformans crossing of the blood-brain barrier.

Am J Pathol

166

421

432

38. XuYLiuYRidgwayNDMcMasterCR

2001

Novel members of the human oxysterol-binding protein family bind

phospholipids and regulate vesicle transport.

J Biol Chem

276

18407

18414

39. ImYJRaychaudhuriSPrinzWAHurleyJH

2005

Structural mechanism for sterol sensing and transport by

OSBP-related proteins.

Nature

437

154

158

40. FairnGDMcMasterCR

2005

Identification and assessment of the role of a nominal

phospholipid binding region of ORP1S (oxysterol-binding-protein-related

protein 1 short) in the regulation of vesicular transport.

Biochem J

387

889

896

41. YonedaADoeringTL

2006

A eukaryotic capsular polysaccharide is synthesized

intracellularly and secreted via exocytosis.

Mol Biol Cell

17

5131

5140

42. ChenL-CBlankECasadevallA

1996

Extracellular proteinase activity of Cryptococcus

neoformans.

Clin Diagn Lab Immunol

3

570

574

43. MoffatJFTompkinsLS

1992

A quantitative model of intracellular growth of

Legionella pneumophila in Acanthamoeba

castellanii.

Infect Immun

60

296

301

44. SheaJMKechichianTBLubertoCDel PoetaM

2006

The cryptococcal enzyme inositol

phosphosphingolipid-phospholipase C confers resistance to the antifungal

effects of macrophages and promotes fungal dissemination to the central

nervous system.

Infect Immun

74

5977

5988

45. UlsamerAGSmithFRKornED

1969

Lipids of Acanthamoeba castellanii. Composition

and effects of phagocytosis on incorporation of radioactive

precursors.

J Cell Biol

43

105

114

46. CasadevallAMukherjeeJScharffMD

1992

Monoclonal antibody ELISAs for cryptococcal

polysaccharide.

J Immunol Meth

154

27

35

47. GuimaraesAJAlmeidaMAPizziniCVPeraltaJMNosanchukJD

2010

Evaluation of an enzyme linked immunosorbent assay (ELISA) using

purified, deglycosylated histoplasmin for different clinical manifestations

of histoplasmosis.

Microbiol Res

2

10.4081/mr.2009.e1

48. CasadevallACleareWFeldmesserMGlatman-FreedmanAGoldmanDL

1998

Characterization of a murine monoclonal antibody to

Cryptocococcus neoformans polysaccharide that is a

candidate for human therapeutic studies.

Antimicrob Agents Chemotherap

42

1437

1446

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#