#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Inhibition of Both HIV-1 Reverse Transcription and Gene Expression by
a Cyclic Peptide that Binds the Tat-Transactivating Response Element (TAR)
RNA


The RNA response element TAR plays a critical role in HIV replication by

providing a binding site for the recruitment of the viral transactivator protein

Tat. Using a structure-guided approach, we have developed a series of

conformationally-constrained cyclic peptides that act as structural mimics of

the Tat RNA binding region and block Tat-TAR interactions at nanomolar

concentrations in vitro. Here we show that these compounds

block Tat-dependent transcription in cell-free systems and in cell-based

reporter assays. The compounds are also cell permeable, have low toxicity, and

inhibit replication of diverse HIV-1 strains, including both CXCR4-tropic and

CCR5-tropic primary HIV-1 isolates of the divergent subtypes A, B, C, D and

CRF01_AE. In human peripheral blood mononuclear cells, the cyclic peptidomimetic

L50 exhibited an IC50 ∼250 nM. Surprisingly, inhibition of

LTR-driven HIV-1 transcription could not account for the full antiviral

activity. Timed drug-addition experiments revealed that L-50 has a bi-phasic

inhibition curve with the first phase occurring after HIV-1 entry into the host

cell and during the initiation of HIV-1 reverse transcription. The second phase

coincides with inhibition of HIV-1 transcription. Reconstituted reverse

transcription assays confirm that HIV-1 (−) strand strong stop DNA

synthesis is blocked by L50-TAR RNA interactions in-vitro.

These findings are consistent with genetic evidence that TAR plays critical

roles both during reverse transcription and during HIV gene expression. Our

results suggest that antiviral drugs targeting TAR RNA might be highly effective

due to a dual inhibitory mechanism.


Vyšlo v časopise: Inhibition of Both HIV-1 Reverse Transcription and Gene Expression by a Cyclic Peptide that Binds the Tat-Transactivating Response Element (TAR) RNA. PLoS Pathog 7(5): e32767. doi:10.1371/journal.ppat.1002038
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002038

Souhrn

The RNA response element TAR plays a critical role in HIV replication by

providing a binding site for the recruitment of the viral transactivator protein

Tat. Using a structure-guided approach, we have developed a series of

conformationally-constrained cyclic peptides that act as structural mimics of

the Tat RNA binding region and block Tat-TAR interactions at nanomolar

concentrations in vitro. Here we show that these compounds

block Tat-dependent transcription in cell-free systems and in cell-based

reporter assays. The compounds are also cell permeable, have low toxicity, and

inhibit replication of diverse HIV-1 strains, including both CXCR4-tropic and

CCR5-tropic primary HIV-1 isolates of the divergent subtypes A, B, C, D and

CRF01_AE. In human peripheral blood mononuclear cells, the cyclic peptidomimetic

L50 exhibited an IC50 ∼250 nM. Surprisingly, inhibition of

LTR-driven HIV-1 transcription could not account for the full antiviral

activity. Timed drug-addition experiments revealed that L-50 has a bi-phasic

inhibition curve with the first phase occurring after HIV-1 entry into the host

cell and during the initiation of HIV-1 reverse transcription. The second phase

coincides with inhibition of HIV-1 transcription. Reconstituted reverse

transcription assays confirm that HIV-1 (−) strand strong stop DNA

synthesis is blocked by L50-TAR RNA interactions in-vitro.

These findings are consistent with genetic evidence that TAR plays critical

roles both during reverse transcription and during HIV gene expression. Our

results suggest that antiviral drugs targeting TAR RNA might be highly effective

due to a dual inhibitory mechanism.


Zdroje

1. VolberdingPADeeksSG

2010

Antiretroviral therapy and management of HIV

infection.

Lancet

376

49

62

2. RichmanDDMargolisDMDelaneyMGreeneWCHazudaD

2009

The challenge of finding a cure for HIV

infection.

Science

323

1304

1307

3. Menendez-AriasL

2010

Molecular basis of human immunodeficiency virus drug resistance:

an update.

Antiviral Res

85

210

231

4. TaiwoBHicksCEronJ

2010

Unmet therapeutic needs in the new era of combination

antiretroviral therapy for HIV-1.

J Antimicrob Chemother

65

1100

1107

5. KarnJ

1999

Tackling Tat.

J Mol Biol

293

235

254

6. PeterlinBMPriceDH

2006

Controlling the elongation phase of transcription with

P-TEFb.

Mol Cell

23

297

305

7. WeiPGarberMEFangSMFischerWHJonesKA

1998

A novel CDK9-associated C-type cyclin interacts directly with

HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR

RNA.

Cell

92

451

462

8. KimYKBourgeoisCFIselCChurcherMJKarnJ

2002

Phosphorylation of the RNA polymerase II carboxyl-terminal domain

by CDK9 is directly responsible for human immunodeficiency virus type 1

Tat-activated transcriptional elongation.

Mol Cell Biol

22

4622

4637

9. CupelliLAHsuMC

1995

The human immunodeficiency virus type 1 Tat antagonist, Ro

5-3335, predominantly inhibits transcription initiation from the viral

promoter.

J Virol

69

2640

2643

10. HwangSTamilarasuNKiblerKCaoHAliA

2003

Discovery of a small molecule Tat-trans-activation-responsive RNA

antagonist that potently inhibits human immunodeficiency virus-1

replication.

J Biol Chem

278

39092

39103

11. FujinagaKIrwinDHuangYTaubeRKurosuT

2004

Dynamics of human immunodeficiency virus transcription: P-TEFb

phosphorylates RD and dissociates negative effectors from the

transactivation response element.

Mol Cell Biol

24

787

795

12. TahirovTHBabayevaNDVarzavandKCooperJJSedoreSC

2010

Crystal structure of HIV-1 Tat complexed with human

P-TEFb.

Nature

465

747

751

13. KarnJ

2011

The molecular biology of HIV latency: breaking and restoring the

Tat-dependent transcriptional circuit.

Curr Opin HIV AIDS

6

4

11

14. DavisBAfsharMVaraniGMurchieAIKarnJ

2004

Rational design of inhibitors of HIV-1 TAR RNA through the

stabilisation of electrostatic “hot spots”.

J Mol Biol

336

343

356

15. MurchieAIDavisBIselCAfsharMDrysdaleMJ

2004

Structure-based drug design targeting an inactive RNA

conformation: exploiting the flexibility of HIV-1 TAR RNA.

J Mol Biol

336

625

638

16. HamyFBrondaniVFlorsheimerAStarkWBlommersMJ

1998

A new class of HIV-1 Tat antagonist acting through Tat-TAR

inhibition.

Biochemistry

37

5086

5095

17. HamyFFelderERHeizmannGLazdinsJAboul-elaF

1997

An inhibitor of the Tat/TAR RNA interaction that effectively

suppresses HIV-1 replication.

Proc Natl Acad Sci U S A

94

3548

3553

18. O'BrienWASumner-SmithMMaoSHSadeghiSZhaoJQ

1996

Anti-human immunodeficiency virus type 1 activity of an

oligocationic compound mediated via gp120 V3 interactions.

J Virol

70

2825

2831

19. HsuMCSchuttADHollyMSliceLWShermanMI

1991

Inhibition of HIV replication in acute and chronic infections in

vitro by a Tat antagonist.

Science

254

1799

1802

20. HuqIPingYHTamilarasuNRanaTM

1999

Controlling human immunodeficiency virus type 1 gene expression

by unnatural peptides.

Biochemistry

38

5172

5177

21. LeeCWCaoHIchiyamaKRanaTM

2005

Design and synthesis of a novel peptidomimetic inhibitor of HIV-1

Tat-TAR interactions: squaryldiamide as a new potential bioisostere of

unsubstituted guanidine.

Bioorg Med Chem Lett

15

4243

4246

22. DoranzBJGrovit-FerbasKSharronMPMaoSHGoetzMB

1997

A small-molecule inhibitor directed against the chemokine

receptor CXCR4 prevents its use as an HIV-1 coreceptor.

J Exp Med

186

1395

1400

23. DaelemansDScholsDWitvrouwMPannecouqueCHatseS

2000

A second target for the peptoid Tat/transactivation response

element inhibitor CGP64222: inhibition of human immunodeficiency virus

replication by blocking CXC-chemokine receptor 4-mediated virus

entry.

Mol Pharmacol

57

116

124

24. AthanassiouZDiasRLMoehleKDobsonNVaraniG

2004

Structural mimicry of retroviral tat proteins by constrained

beta-hairpin peptidomimetics: ligands with high affinity and selectivity for

viral TAR RNA regulatory elements.

J Am Chem Soc

126

6906

6913

25. AthanassiouZPatoraKDiasRLMoehleKRobinsonJA

2007

Structure-guided peptidomimetic design leads to nanomolar

beta-hairpin inhibitors of the Tat-TAR interaction of bovine

immunodeficiency virus.

Biochemistry

46

741

751

26. DavidsonALeeperTCAthanassiouZPatora-KomisarskaKKarnJ

2009

Simultaneous recognition of HIV-1 TAR RNA bulge and loop

sequences by cyclic peptide mimics of Tat protein.

Proc Natl Acad Sci U S A

106

11931

11936

27. LeeperTCAthanassiouZDiasRLRobinsonJAVaraniG

2005

TAR RNA recognition by a cyclic peptidomimetic of Tat

protein.

Biochemistry

44

12362

12372

28. PuglisiJDChenLBlanchardSFrankelAD

1995

Solution structure of a bovine immunodeficiency virus Tat-TAR

peptide-RNA complex.

Science

270

1200

1203

29. YeXKumarRAPatelDJ

1995

Molecular recognition in the bovine immunodeficiency virus Tat

peptide-TAR RNA complex.

Chem Biol

2

827

840

30. DudleyDMWentzelJLLalondeMSVeazeyRSArtsEJ

2009

Selection of a simian-human immunodeficiency virus strain

resistant to a vaginal microbicide in macaques.

J Virol

83

5067

5076

31. WildCOasTMcDanalCBolognesiDMatthewsT

1992

A synthetic peptide inhibitor of human immunodeficiency virus

replication: correlation between solution structure and viral

inhibition.

Proc Natl Acad Sci U S A

89

10537

10541

32. RichardJPMelikovKVivesERamosCVerbeureB

2003

Cell-penetrating peptides. A reevaluation of the mechanism of

cellular uptake.

J Biol Chem

278

585

590

33. MannDAFrankelAD

1991

Endocytosis and targeting of exogenous HIV-1 Tat

protein.

EMBO J

10

1733

1739

34. ZieglerANerviPDurrenbergerMSeeligJ

2005

The cationic cell-penetrating peptide CPP(TAT) derived from the

HIV-1 protein TAT is rapidly transported into living fibroblasts: optical,

biophysical, and metabolic evidence.

Biochemistry

44

138

148

35. TakeuchiTKosugeMTadokoroASugiuraYNishiM

2006

Direct and rapid cytosolic delivery using cell-penetrating

peptides mediated by pyrenebutyrate.

ACS Chem Biol

1

299

303

36. MacaraIG

2001

Transport into and out of the nucleus.

Microbiol Mol Biol Rev

65

570

94, table

37. ScottMSBoisvertFMMcDowallMDLamondAIBartonGJ

2010

Characterization and prediction of protein nucleolar localization

sequences.

Nucleic Acids Res

38

7388

7399

38. ArienKKVanhamGArtsEJ

2007

Is HIV-1 evolving to a less virulent form in

humans?

Nat Rev Microbiol

5

141

151

39. BourgeoisCFKimYKChurcherMJWestMJKarnJ

2002

Spt5 cooperates with human immunodeficiency virus type 1 Tat by

preventing premature RNA release at terminator sequences.

Mol Cell Biol

22

1079

1093

40. GraebleMAChurcherMJLoweADGaitMJKarnJ

1993

Human immunodeficiency virus type 1 transactivator protein, tat,

stimulates transcriptional read-through of distal terminator sequences in

vitro.

Proc Natl Acad Sci U S A

90

6184

6188

41. WeberJWeberovaJCarobeneMMirzaMMartinez-PicadoJ

2006

Use of a novel assay based on intact recombinant viruses

expressing green (EGFP) or red (DsRed2) fluorescent proteins to examine the

contribution of pol and env genes to overall HIV-1 replicative

fitness.

J Virol Methods

136

102

117

42. LassenKGLobritzMABaileyJRJohnstonSNguyenS

2009

Elite suppressor-derived HIV-1 envelope glycoproteins exhibit

reduced entry efficiency and kinetics.

PLoS Pathog

5

e1000377

43. ManceboHSLeeGFlygareJTomassiniJLuuP

1997

P-TEFb kinase is required for HIV Tat transcriptional activation

in vivo and in vitro.

Genes Dev

11

2633

2644

44. WestMJLoweADKarnJ

2001

Activation of human immunodeficiency virus transcription in T

cells revisited: NF-kappaB p65 stimulates transcriptional

elongation.

J Virol

75

8524

8537

45. DudleyDMGaoYNelsonKNHenryKRNankyaI

2009

A novel yeast-based recombination method to clone and propagate

diverse HIV-1 isolates.

Biotechniques

46

458

467

46. FisherRABertonisJMMeierWJohnsonVACostopoulosDS

1988

HIV infection is blocked in vitro by recombinant soluble

CD4.

Nature

331

76

78

47. PugachPMarozsanAJKetasTJLandesELMooreJP

2007

HIV-1 clones resistant to a small molecule CCR5 inhibitor use the

inhibitor-bound form of CCR5 for entry.

Virology

361

212

228

48. de ClercqE

2010

In search of a selective therapy of viral

infections.

Antiviral Res

85

19

24

49. ArtsEJLiXGuZKleimanLParniakMA

1994

Comparison of deoxyoligonucleotide and tRNA(Lys-3) as primers in

an endogenous human immunodeficiency virus-1 in vitro reverse

transcription/template-switching reaction.

J Biol Chem

269

14672

14680

50. RennerSLudwigVBodenOSchefferUGobelM

2005

New inhibitors of the Tat-TAR RNA interaction found with a

“fuzzy” pharmacophore model.

Chembiochem

6

1119

1125

51. HeMYuanDLinWPangRYuX

2005

Synthesis and assay of isoquinoline derivatives as HIV-1 Tat-TAR

interaction inhibitors.

Bioorg Med Chem Lett

15

3978

3981

52. MeiHYCuiMHeldsingerALemrowSMLooJA

1998

Inhibitors of protein-RNA complexation that target the RNA:

specific recognition of human immunodeficiency virus type 1 TAR RNA by small

organic molecules.

Biochemistry

37

14204

14212

53. BranchAD

1998

A good antisense molecule is hard to find.

Trends Biochem Sci

23

45

50

54. JacqueJMTriquesKStevensonM

2002

Modulation of HIV-1 replication by RNA

interference.

Nature

418

435

438

55. TamilarasuNHuqIRanaTM

2001

Targeting RNA with peptidomimetic oligomers in human

cells.

Bioorg Med Chem Lett

11

505

507

56. Sumner-SmithMZhengYZhangYPTwistEMClimieSC

1995

Antiherpetic activities of N-alpha-acetyl-nona-D-arginine amide

acetate.

Drugs Exp Clin Res

21

1

6

57. ApolloniAMeredithLWSuhrbierAKiernanRHarrichD

2007

The HIV-1 Tat protein stimulates reverse transcription in

vitro.

Curr HIV Res

5

473

483

58. HarrichDUlichCGarcia-MartinezLFGaynorRB

1997

Tat is required for efficient HIV-1 reverse

transcription.

EMBO J

16

1224

1235

59. HarrichDUlichCGaynorRB

1996

A critical role for the TAR element in promoting efficient human

immunodeficiency virus type 1 reverse transcription.

J Virol

70

4017

4027

60. BoudierCStorchakRSharmaKKDidierPFollenius-WundA

2010

The mechanism of HIV-1 Tat-directed nucleic acid annealing

supports its role in reverse transcription.

J Mol Biol

400

487

501

61. ZengYLiuHWLandesCFKimYJMaX

2007

Probing nucleation, reverse annealing, and chaperone function

along the reaction path of HIV-1 single-strand transfer.

Proc Natl Acad Sci U S A

104

12651

12656

62. BerkhoutBVastenhouwNLKlasensBIHuthoffH

2001

Structural features in the HIV-1 repeat region facilitate strand

transfer during reverse transcription.

RNA

7

1097

1114

63. DriscollMDHughesSH

2000

Human immunodeficiency virus type 1 nucleocapsid protein can

prevent self-priming of minus-strand strong stop DNA by promoting the

annealing of short oligonucleotides to hairpin sequences.

J Virol

74

8785

8792

64. GuoJHendersonLEBessJKaneBLevinJG

1997

Human immunodeficiency virus type 1 nucleocapsid protein promotes

efficient strand transfer and specific viral DNA synthesis by inhibiting

TAR-dependent self-priming from minus-strand strong-stop

DNA.

J Virol

71

5178

5188

65. IselCWesthofEMassireCLe GriceSFEhresmannB

1999

Structural basis for the specificity of the initiation of HIV-1

reverse transcription.

EMBO J

18

1038

1048

66. BaudinFMarquetRIselCDarlixJLEhresmannB

1993

Functional sites in the 5′ region of human immunodeficiency

virus type 1 RNA form defined structural domains.

J Mol Biol

229

382

397

67. PanCMezeiMMujtabaSMullerMZengL

2007

Structure-guided optimization of small molecules inhibiting human

immunodeficiency virus 1 Tat association with the human coactivator

p300/CREB binding protein-associated factor.

J Med Chem

50

2285

2288

68. Heilman-MillerSLWuTLevinJG

2004

Alteration of nucleic acid structure and stability modulates the

efficiency of minus-strand transfer mediated by the HIV-1 nucleocapsid

protein.

J Biol Chem

279

44154

44165

69. MeredithLWSivakumaranHMajorLSuhrbierAHarrichD

2009

Potent inhibition of HIV-1 replication by a Tat

mutant.

PLoS One

4

e7769

70. DasATHarwigAVrolijkMMBerkhoutB

2007

The TAR hairpin of human immunodeficiency virus type 1 can be

deleted when not required for Tat-mediated activation of

transcription.

J Virol

81

7742

7748

71. ChurcherMJLamontCHamyFDingwallCGreenSM

1993

High affinity binding of TAR RNA by the human immunodeficiency

virus type-1 tat protein requires base-pairs in the RNA stem and amino acid

residues flanking the basic region.

J Mol Biol

230

90

110

72. KeenNJChurcherMJKarnJ

1997

Transfer of Tat and release of TAR RNA during the activation of

the human immunodeficiency virus type-1 transcription elongation

complex.

EMBO J

16

5260

5272

73. AdachiAGendelmanHEKoenigSFolksTWilleyR

1986

Production of acquired immunodeficiency syndrome-associated

retrovirus in human and nonhuman cells transfected with an infectious

molecular clone.

J Virol

59

284

291

74. MarozsanAJTorreVSJohnsonMBallSCCrossJV

2001

Mechanisms involved in stimulation of human immunodeficiency

virus type 1 replication by aminooxypentane RANTES.

J Virol

75

8624

8638

75. HopeTJHuangXJMcDonaldDParslowTG

1990

Steroid-receptor fusion of the human immunodeficiency virus type

1 Rev transactivator: mapping cryptic functions of the arginine-rich

motif.

Proc Natl Acad Sci U S A

87

7787

7791

76. PageKALandauNRLittmanDR

1990

Construction and use of a human immunodeficiency virus vector for

analysis of virus infectivity.

J Virol

64

5270

5276

77. TorreVSMarozsanAJAlbrightJLCollinsKRHartleyO

2000

Variable sensitivity of CCR5-tropic human immunodeficiency virus

type 1 isolates to inhibition by RANTES analogs.

J Virol

74

4868

4876

78. ArtsEJStetorSRLiXRauschJWHowardKJ

1996

Initiation of (-) strand DNA synthesis from tRNA(3Lys) on

lentiviral RNAs: implications of specific HIV-1 RNA-tRNA(3Lys) interactions

inhibiting primer utilization by retroviral reverse

transcriptases.

Proc Natl Acad Sci U S A

93

10063

10068

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#