Quantitative Subcellular Proteome and Secretome Profiling of Influenza A Virus-Infected Human Primary Macrophages
Influenza A viruses are important pathogens that cause acute respiratory diseases and annual epidemics in humans. Macrophages recognize influenza A virus infection with their pattern recognition receptors, and are involved in the activation of proper innate immune response. Here, we have used high-throughput subcellular proteomics combined with bioinformatics to provide a global view of host cellular events that are activated in response to influenza A virus infection in human primary macrophages. We show that viral infection regulates the expression and/or subcellular localization of more than one thousand host proteins at early phases of infection. Our data reveals that there are dramatic changes in mitochondrial and nuclear proteomes in response to infection. We show that a rapid cytoplasmic leakage of lysosomal proteins, including cathepsins, followed by their secretion, contributes to inflammasome activation and apoptosis seen in the infected macrophages. Also, our results demonstrate that P2X7 receptor and src tyrosine kinase activity are essential for inflammasome activation during influenza A virus infection. Finally, we show that influenza A virus infection is associated with robust secretion of different danger-associated molecular patterns (DAMPs) suggesting an important role for DAMPs in host response to influenza A virus infection. In conclusion, our high-throughput quantitative proteomics study provides important new insight into host-response against influenza A virus infection in human primary macrophages.
Vyšlo v časopise:
Quantitative Subcellular Proteome and Secretome Profiling of Influenza A Virus-Infected Human Primary Macrophages. PLoS Pathog 7(5): e32767. doi:10.1371/journal.ppat.1001340
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1001340
Souhrn
Influenza A viruses are important pathogens that cause acute respiratory diseases and annual epidemics in humans. Macrophages recognize influenza A virus infection with their pattern recognition receptors, and are involved in the activation of proper innate immune response. Here, we have used high-throughput subcellular proteomics combined with bioinformatics to provide a global view of host cellular events that are activated in response to influenza A virus infection in human primary macrophages. We show that viral infection regulates the expression and/or subcellular localization of more than one thousand host proteins at early phases of infection. Our data reveals that there are dramatic changes in mitochondrial and nuclear proteomes in response to infection. We show that a rapid cytoplasmic leakage of lysosomal proteins, including cathepsins, followed by their secretion, contributes to inflammasome activation and apoptosis seen in the infected macrophages. Also, our results demonstrate that P2X7 receptor and src tyrosine kinase activity are essential for inflammasome activation during influenza A virus infection. Finally, we show that influenza A virus infection is associated with robust secretion of different danger-associated molecular patterns (DAMPs) suggesting an important role for DAMPs in host response to influenza A virus infection. In conclusion, our high-throughput quantitative proteomics study provides important new insight into host-response against influenza A virus infection in human primary macrophages.
Zdroje
1. AkiraS
UematsuS
TakeuchiO
2006 Pathogen recognition and innate immunity. Cell 124 783 801
2. KawaiT
AkiraS
2006 Innate immune recognition of viral infection. Nat Immunol 7 131 137
3. KoyamaS
IshiiKJ
KumarH
TanimotoT
CobanC
2007 Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J Immunol 179 4711 4720
4. PirhonenJ
SarenevaT
KurimotoM
JulkunenI
MatikainenS
1999 Virus infection activates IL-1β and IL-18 production in human macrophages by a caspase-1-dependent pathway. J Immunol 162 7322 7329
5. PirhonenJ
SarenevaT
JulkunenI
MatikainenS
2001 Virus infection induces proteolytic processing of IL-18 in human macrophages via caspase-1 and caspase-3 activation. Eur J Immunol 31 726 733
6. DinarelloCA
2009 Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27 519 550
7. MartinonF
BurnsK
TschoppJ
2002 The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 10 417 426
8. MartinonF
MayorA
TschoppJ
2009 The inflammasomes: guardians of the body. Annu Rev Immunol 27 229 265
9. HornungV
LatzE
2010 Intracellular DNA recognition. Nat Rev Immunol 10 123 130
10. AllenIC
ScullMA
MooreCB
HollEK
McElvania-TeKippeE
2009 The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30 556 565
11. IchinoheT
LeeHK
OguraY
FlavellR
IwasakiA
2009 Inflammasome recognition of influenza virus is essential for adaptive immune responses. J Exp Med 206 79 87
12. ThomasPG
DashP
AldridgeJRJr
EllebedyAH
ReynoldsC
2009 The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30 566 575
13. ChoudharyC
MannM
2010 Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11 427 439
14. LuberCA
CoxJ
LauterbachH
FanckeB
SelbachM
2010 Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32 279 289
15. TrostM
EnglishL
LemieuxS
CourcellesM
DesjardinsM
2009 The phagosomal proteome in interferon-γ-activated macrophages. Immunity 30 143 154
16. EmmottE
WiseH
LoucaidesEM
MatthewsDA
DigardP
2010 Quantitative proteomics using SILAC coupled to LC-MS/MS reveals changes in the nucleolar proteome in influenza A virus infected cells. J Proteome Res 9 5335 5345
17. QattanAT
MulveyC
CrawfordM
NataleDA
Godovac-ZimmermannJ
2010 Quantitative organelle proteomics of MCF-7 breast cancer cells reveals multiple subcellular locations for proteins in cellular functional processes. J Proteome Res 9 495 508
18. WatanabeT
WatanabeS
KawaokaY
2010 Cellular networks involved in the influenza virus life cycle. Cell Host Microbe 7 427 439
19. KellerM
RüeggA
WernerS
BeerH-D
2008 Active caspase-1 is a regulator of unconventional protein secretion. Cell 132 818 831
20. HornungV
BauernfeindF
HalleA
SamstadEO
KonoH
2008 Silica crystals and aluminium salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9 847 856
21. SolleM
LabasiJ
PerregauxDG
StamE
PetrushovaN
2001 Altered cytokine production in mice lacking P2X7 receptors. J Biol Chem 276 125 132
22. MariathasanS
WeissDS
NewtonK
McBrideJ
O'RourkeK
2006 Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440 228 232
23. RintahakaJ
WiikD
KovanenPE
AleniusH
MatikainenS
2008 Cytosolic antiviral RNA recognition pathway activates caspases 1 and 3. J Immunol 180 1749 1757
24. CruzCM
RinnaA
FormanHJ
VenturaALM
PersechiniPM
2007 ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282 2871 2879
25. DostertC
PétrilliV
Van BruggenR
SteeleC
MossmanBT
2008 Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320 674 677
26. GrossO
PoeckH
BscheiderM
DostertC
HannesschlägerN
2009 Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459 433 436
27. GiannoniE
TaddeiML
ChiarugiP
2010 Src redox regulation: again in the front line. Free Radic Biol Med 49 516 527
28. HaoL
SakuraiA
WatanabeT
SorensenE
NidomCA
2008 Drosofila RNAi screen identifies host genes important for influenza virus replication. Nature 454 890 893
29. BrassAL
HuangI-C
BenitaY
JohnSP
KrishnanMN
2009 The IFITM proteins mediate cellular resistance to Influenza A H1N1 virus, West Nile Virus, and Dengue Virus. Cell 139 1243 1254
30. ShapiraSD
Gat-ViksI
ShumBOV
DricotA
de GraceMM
2009 A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139 1255 1267
31. SuiHY
ZhaoGY
HuangJD
JinDY
YuenKY
2009 Small interfering RNA targeting m2 gene induces effective and long term inhibition of influenza A virus replication. PLoS One 4 e5671
32. KönigR
StertzS
ZhouY
InoueA
HoffmanH-H
2010 Human host factors required for influenza virus replication. Nature 463 813 817
33. KarlasA
MachuyN
ShinY
PleissnerK-P
ArtariniA
2010 Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 463 818 822
34. LiuN
SongW
WangP
LeeK
ChanW
2008 Proteomics analysis of differential expression of cellular proteins in response to avian H9N2 virus infection in human cells. Proteomics 8 1851 1858
35. VesterD
RappE
GadeD
GenzelY
ReichlU
2009 Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines. Proteomics 9 3316 3327
36. van DiepenA
BrandHK
SamaI
LambooyLHJ
van den HeuvelLP
2010 Quantitative proteome profiling of respiratory virus-infected lung epithelial cells. J Proteomics 73 1680 1693
37. CoombsKM
BerardA
XuW
KrokhinO
MengX
2010 Quantitative proteomic analyses of influenza virus-infected cultured human lung cells. J Virol 84 10888 10906
38. EmmottE
RodgersMA
MacdonaldA
McCroryS
AjuhP
2010 Quantitative proteomics using stable isotope labeling with amino acids in cell culture reveals changes in the cytoplasmic, nuclear, and nucleolar proteomes in Vero cells infected with the coronavirus infectious bronchitis virus. Mol Cell Proteomics 9 1920 1936
39. MundayDC
EmmottE
SurteesR
LardeauC-H
WuW
2010 Quantitative proteomic analysis of A549 cells infected with human respiratory syncytial virus. Mol Cell Proteomics 9 2438 2459
40. ÖhmanT
RintahakaJ
KalkkinenN
MatikainenS
NymanTA
2009 Actin and RIG-I/MAVS signaling components translocate to mitochondria upon influenza A virus infection of human primary macrophages. J Immunol 182 5682 5692
41. KannegantiT-D
Body-MalapelM
AmerA
ParkJ-H
WhitfieldJ
2006 Critical role for cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem 281 36560 36568
42. IchinoheT
PangIK
IwasakiA
2010 Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol 11 404 410
43. ZhouR
TardivelA
ThorensB
ChoiI
TschoppJ
2010 Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11 136 140
44. ShioMT
EisenbarthSC
SavariaM
VinetAF
BellemareMJ
2009 Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog 5 e1000559
45. DiazB
ShaniG
PassI
AndersonD
QuintavalleM
2009 Tks5-dependent, nox-mediated generation of reactive oxygen species is necessary for invadopodia formation. Sci Signal 2 ra53
46. JohanssonA-C
AppelqvistH
NilssonC
KågedalK
RobergK
2010 Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis 15 527 540
47. NickelW
RabouilleC
2009 Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol 10 148 155
48. BianchiME
2007 DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81 1 5
49. ChowVW
MattsonMP
WongPC
GleichmannM
2010 An overview of APP processing enzymes and products. Neuromolecular Med 12 1 12
50. HalleA
HornungV
PetzoldGC
StewartCR
MonksBG
2008 The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nature Immunol 9 857 865
51. Meyer-LuehmannM
Spires-JonesTL
PradaC
Garcia-AllozaM
de CalignonA
2008 Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease. Nature 451 720 724
52. YanaiH
BanT
WangZ
ChoiMK
KawamuraT
2009 HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462 99 103
53. SatoS
St-PierreC
BhaumikP
NieminenJ
2009 Galectins in innate immunity: dual functions of hos soluble β-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunol Rev 230 172 187
54. EliasJE
GygiSP
2007 Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4 207 214
55. BackesC
KellerA
KuentzerJ
KneisslB
ComtesseN
2007 GeneTrail—advanced gene set enrichment analysis. Nucleic Acids Res 35 W186 W192
56. JensenLJ
KuhnM
StarkM
ChaffronS
CreeveyC
2009 STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37 D412 D416
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2011 Číslo 5
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Crystal Structure and Functional Analysis of the SARS-Coronavirus RNA Cap 2′-O-Methyltransferase nsp10/nsp16 Complex
- The OXI1 Kinase Pathway Mediates -Induced Growth Promotion in Arabidopsis
- The Hexamer Structure of the Rift Valley Fever Virus Nucleoprotein Suggests a Mechanism for its Assembly into Ribonucleoprotein Complexes
- Acquisition of Human-Type Receptor Binding Specificity by New H5N1 Influenza Virus Sublineages during Their Emergence in Birds in Egypt