#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Hexamer Structure of the Rift Valley Fever Virus Nucleoprotein Suggests a Mechanism for its Assembly into Ribonucleoprotein Complexes


Rift Valley fever virus (RVFV), a Phlebovirus with a genome consisting of three single-stranded RNA segments, is spread by infected mosquitoes and causes large viral outbreaks in Africa. RVFV encodes a nucleoprotein (N) that encapsidates the viral RNA. The N protein is the major component of the ribonucleoprotein complex and is also required for genomic RNA replication and transcription by the viral polymerase. Here we present the 1.6 Å crystal structure of the RVFV N protein in hexameric form. The ring-shaped hexamers form a functional RNA binding site, as assessed by mutagenesis experiments. Electron microscopy (EM) demonstrates that N in complex with RNA also forms rings in solution, and a single-particle EM reconstruction of a hexameric N-RNA complex is consistent with the crystallographic N hexamers. The ring-like organization of the hexamers in the crystal is stabilized by circular interactions of the N terminus of RVFV N, which forms an extended arm that binds to a hydrophobic pocket in the core domain of an adjacent subunit. The conformation of the N-terminal arm differs from that seen in a previous crystal structure of RVFV, in which it was bound to the hydrophobic pocket in its own core domain. The switch from an intra- to an inter-molecular interaction mode of the N-terminal arm may be a general principle that underlies multimerization and RNA encapsidation by N proteins from Bunyaviridae. Furthermore, slight structural adjustments of the N-terminal arm would allow RVFV N to form smaller or larger ring-shaped oligomers and potentially even a multimer with a super-helical subunit arrangement. Thus, the interaction mode between subunits seen in the crystal structure would allow the formation of filamentous ribonucleocapsids in vivo. Both the RNA binding cleft and the multimerization site of the N protein are promising targets for the development of antiviral drugs.


Vyšlo v časopise: The Hexamer Structure of the Rift Valley Fever Virus Nucleoprotein Suggests a Mechanism for its Assembly into Ribonucleoprotein Complexes. PLoS Pathog 7(5): e32767. doi:10.1371/journal.ppat.1002030
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002030

Souhrn

Rift Valley fever virus (RVFV), a Phlebovirus with a genome consisting of three single-stranded RNA segments, is spread by infected mosquitoes and causes large viral outbreaks in Africa. RVFV encodes a nucleoprotein (N) that encapsidates the viral RNA. The N protein is the major component of the ribonucleoprotein complex and is also required for genomic RNA replication and transcription by the viral polymerase. Here we present the 1.6 Å crystal structure of the RVFV N protein in hexameric form. The ring-shaped hexamers form a functional RNA binding site, as assessed by mutagenesis experiments. Electron microscopy (EM) demonstrates that N in complex with RNA also forms rings in solution, and a single-particle EM reconstruction of a hexameric N-RNA complex is consistent with the crystallographic N hexamers. The ring-like organization of the hexamers in the crystal is stabilized by circular interactions of the N terminus of RVFV N, which forms an extended arm that binds to a hydrophobic pocket in the core domain of an adjacent subunit. The conformation of the N-terminal arm differs from that seen in a previous crystal structure of RVFV, in which it was bound to the hydrophobic pocket in its own core domain. The switch from an intra- to an inter-molecular interaction mode of the N-terminal arm may be a general principle that underlies multimerization and RNA encapsidation by N proteins from Bunyaviridae. Furthermore, slight structural adjustments of the N-terminal arm would allow RVFV N to form smaller or larger ring-shaped oligomers and potentially even a multimer with a super-helical subunit arrangement. Thus, the interaction mode between subunits seen in the crystal structure would allow the formation of filamentous ribonucleocapsids in vivo. Both the RNA binding cleft and the multimerization site of the N protein are promising targets for the development of antiviral drugs.


Zdroje

1. SchmaljohnCHooperJW 2001 Bunyaviridae: the viruses and their replication. KnipeDMHowleyPMGriffinDELambRAMartinMA Field Virol 4th ed Philadelphia, Pa. Lippincott, Williams and Wilkins 1581 1602

2. BalkhyHHMemishZA 2003 Rift Valley fever: an uninvited zoonosis in the Arabian peninsula. Int J Antimicrob Agents 21 153 157

3. ChevalierVPepinMPleeLLancelotR 2010 Rift Valley fever—a threat for Europe? Euro Surveill 15 19506

4. WeaverSCReisenWK 2010 Present and future arboviral threats. Antiviral Res 85 328 345

5. IkegamiTMakinoS 2009 Rift valley fever vaccines. Vaccine 27 Suppl 4 D69 72

6. AnyambaAChretienJPSmallJTuckerCJFormentyPB 2009 Prediction of a Rift Valley fever outbreak. Proc Natl Acad Sci U S A 106 955 959

7. BarrJNWertzGW 2005 Role of the conserved nucleotide mismatch within 3′- and 5′-terminal regions of Bunyamwera virus in signaling transcription. J Virol 79 3586 3594

8. MorinBCoutardBLelkeMFerronFKerberR 2010 The N-terminal domain of the Arenavirus L protein is an RNA endonuclease essential in mRNA transcription. PLoS Pathog 6 9 e1001038 doi:10.1371/journal.ppat.1001038

9. BhellaDRalphAYeoRP 2004 Conformational flexibility in recombinant measles virus nucleocapsids visualised by cryo-negative stain electron microscopy and real-space helical reconstruction. J Mol Biol 340 319 331

10. SchoehnGMavrakisMAlbertiniAWadeRHoengerA 2004 The 12 A structure of trypsin-treated measles virus N-RNA. J Mol Biol 339 301 312

11. AlbertiniAAWernimontAKMuziolTRavelliRBClapierCR 2006 Crystal structure of the rabies virus nucleoprotein-RNA complex. Science 313 360 363

12. GreenTJZhangXWertzGWLuoM 2006 Structure of the vesicular stomatitis virus nucleoprotein-RNA complex. Science 313 357 360

13. CoxRGreenTJQiuSKangJTsaoJ 2009 Characterization of a mumps virus nucleocapsidlike particle. J Virol 83 11402 11406

14. TawarRGDuquerroySVonrheinCVarelaPFDamier-PiolleL 2009 Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus. Science 326 1279 1283

15. RaymondDDPiperMEGerrardSRSmithJL 2010 Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation. Proc Natl Acad Sci U S A 107 11769 11774

16. LiuLCelmaCCRoyP 2008 Rift Valley fever virus structural proteins: expression, characterization and assembly of recombinant proteins. Virol J 5 82

17. Le MayNGauliardNBillecocqABouloyM 2005 The N terminus of Rift Valley fever virus nucleoprotein is essential for dimerization. J Virol 79 11974 11980

18. IseniFBargeABaudinFBlondelDRuigrokRW 1998 Characterization of rabies virus nucleocapsids and recombinant nucleocapsid-like structures. J Gen Virol 79 Pt 12 2909 2919

19. LuoMGreenTJZhangXTsaoJQiuS 2007 Structural comparisons of the nucleoprotein from three negative strand RNA virus families. Virol J 4 72

20. RuigrokRWBaudinF 1995 Structure of influenza virus ribonucleoprotein particles; II. Purified RNA-free influenza ribonucleoprotein froms structures that are indistinguishable from the intact influenza virus ribonucleoprotein particles. J Gen Virol 76 Pt 4 1009 1014

21. ChengYWolfELarvieMZakOAisenP 2006 Single particle reconstructions of the transferrin-transferrin receptor complex obtained with different specimen preparation techniques. J Mol Biol 355 1048 1065

22. RadermacherMWagenknechtTVerschoorAFrankJ 1987 Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J Microsc 146 113 136

23. PetterssonRFvon BonsdorffCH 1975 Ribonucleoproteins of Uukuniemi virus are circular. J Virol 15 386 392

24. SaikkuPvon BonsdorffCHBrummer-KorvenkontioMVaheriA 1971 Isolation of non-cubical ribonucleoprotein from Inkoo virus, a Bunyamwera supergroup arbovirus. J Gen Virol 13 335 337

25. SamsoABouloyMHannounC 1975 [Circular ribonucleoproteins in the virus Lumbo (Bunyavirus)]. C R Acad Sci Hebd Seances Acad Sci D 280 779 782

26. SamsoABouloyMHannounC 1976 [Demonstration of circular ribonucleic acid in the Lumbo virus (Bunyavirus)]. C R Acad Sci Hebd Seances Acad Sci D 282 1653 1655

27. HewlettMJPetterssonRFBaltimoreD 1977 Circular forms of Uukuniemi virion RNA: an electron microscopic study. J Virol 21 1085 1093

28. LopezNMullerRPrehaudCBouloyM 1995 The L protein of Rift Valley fever virus can rescue viral ribonucleoproteins and transcribe synthetic genome-like RNA molecules. J Virol 69 3972 3979

29. FlickRElghFPetterssonRF 2002 Mutational analysis of the Uukuniemi virus (Bunyaviridae family) promoter reveals two elements of functional importance. J Virol 76 10849 10860

30. OsborneJCElliottRM 2000 RNA binding properties of bunyamwera virus nucleocapsid protein and selective binding to an element in the 5′ terminus of the negative-sense S segment. J Virol 74 9946 9952

31. RancurelCKhosraviMDunkerAKRomeroPRKarlinD 2009 Overlapping genes produce proteins with unusual sequence properties and offer insight into de novo protein creation. J Virol 83 10719 10736

32. KabschW 2010 Xds. Acta Crystallogr D Biol Crystalogr 66 125 132

33. SheldrickGM 2008 A short history of SHELX. Acta Crystallogr A 64 112 122

34. PerrakisAHarkiolakiMWilsonKSLamzinVS 2001 ARP/wARP and molecular replacement. Acta Crystallogr D Biol Crystallogr 57 1445 1450

35. EmsleyPCowtanK 2004 Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60 2126 2132

36. McCoyAJGrosse-KunstleveRWAdamsPDWinnMDStoroniLC 2007 Phaser crystallographic software. J Appl Crystallogr 40 658 674

37. WinnMDIsupovMMurshudovGN 2000 Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr D Biol Crystallogr 57 122 133

38. LaskowskiRAMacArthurMWMossDSThorntonJM 1993 PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26 283 291

39. RocchiaWAlexovEHonigB 2001 Extending the Applicability of the Nonlinear Poisson-Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions. The J Phys Chem B 105 6507 6514

40. EdgarRC 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 1792 1797

41. GouyMGuindonSGascuelO 2010 SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27 221 224

42. KleywegtGJ 1996 Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr D Biol Crystallogr 52 842 857

43. GouetPRobertXCourcelleE 2003 ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31 3320 3323

44. OhiMLiYChengYWalzT 2004 Negative Staining and Image Classification - Powerful Tools in Modern Electron Microscopy. Biol Proced Online 6 23 34

45. FrankJRadermacherMPenczekPZhuJLiY 1996 SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116 190 199

46. PettersenEFGoddardTDHuangCCCouchGSGreenblattDM 2004 UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25 1605 1612

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#