A Screen of Mutants Reveals Important Roles for Dot/Icm Effectors and Host Autophagy in Vacuole Biogenesis
Coxiella burnetii is the causative agent of the human disease Q fever. This bacterium uses the Dot/Icm type IV secretion system to deliver effectors into the cytosol of host cells. The Dot/Icm system is required for intracellular replication of C. burnetii. To determine the contribution of individual proteins to the establishment of a vacuole that supports C. burnetii replication, we conducted a visual screen on a library of C. burnetii transposon insertion mutants and identified genes required for distinct stages of intracellular replication. This approach was validated through the identification of intracellular replication mutants that included insertions in most of the dot and icm genes, and through the identification of individual effector proteins delivered into host cell by the Dot/Icm system that participate in creating a vacuole that supports intracellular replication of C. burnetii. Complementation studies showed convincingly that the effector Cig57 was critical for intracellular replication. The effector protein Cig2 was found to play a unique role in promoting homotypic fusion of C. burnetii vacuoles. Disrupting host autophagy phenocopied the defect displayed by the cig2 mutant. Thus, our visual screen has successfully identified effectors required for intracellular replication of C. burnetii and indicates that Dot/Icm-dependent subversion of host autophagy promotes homotypic fusion of CCVs.
Vyšlo v časopise:
A Screen of Mutants Reveals Important Roles for Dot/Icm Effectors and Host Autophagy in Vacuole Biogenesis. PLoS Pathog 10(7): e32767. doi:10.1371/journal.ppat.1004286
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004286
Souhrn
Coxiella burnetii is the causative agent of the human disease Q fever. This bacterium uses the Dot/Icm type IV secretion system to deliver effectors into the cytosol of host cells. The Dot/Icm system is required for intracellular replication of C. burnetii. To determine the contribution of individual proteins to the establishment of a vacuole that supports C. burnetii replication, we conducted a visual screen on a library of C. burnetii transposon insertion mutants and identified genes required for distinct stages of intracellular replication. This approach was validated through the identification of intracellular replication mutants that included insertions in most of the dot and icm genes, and through the identification of individual effector proteins delivered into host cell by the Dot/Icm system that participate in creating a vacuole that supports intracellular replication of C. burnetii. Complementation studies showed convincingly that the effector Cig57 was critical for intracellular replication. The effector protein Cig2 was found to play a unique role in promoting homotypic fusion of C. burnetii vacuoles. Disrupting host autophagy phenocopied the defect displayed by the cig2 mutant. Thus, our visual screen has successfully identified effectors required for intracellular replication of C. burnetii and indicates that Dot/Icm-dependent subversion of host autophagy promotes homotypic fusion of CCVs.
Zdroje
1. MaurinM, RaoultD (1999) Q fever. Clin Microbiol Rev 12: 518–553.
2. van der HoekW, MorroyG, RendersNH, WeverPC, HermansMH, et al. (2012) Epidemic Q fever in humans in the Netherlands. Adv Exp Med Biol 984: 329–364.
3. MoosA, HackstadtT (1987) Comparative virulence of intra- and interstrain lipopolysaccharide variants of Coxiella burnetii in the guinea pig model. Infect Immun 55: 1144–1150.
4. HooverTA, CulpDW, VodkinMH, WilliamsJC, ThompsonHA (2002) Chromosomal DNA deletions explain phenotypic characteristics of two antigenic variants, phase II and RSA 514 (crazy), of the Coxiella burnetii nine mile strain. Infect Immun 70: 6726–6733.
5. HoweD, ShannonJG, WinfreeS, DorwardDW, HeinzenRA (2010) Coxiella burnetii phase I and II variants replicate with similar kinetics in degradative phagolysosome-like compartments of human macrophages. Infect Immun 78: 3465–3474.
6. BacaOG, AkporiayeET, AragonAS, MartinezIL, RoblesMV, et al. (1981) Fate of phase I and phase II Coxiella burnetii in several macrophage-like tumor cell lines. Infect Immun 33: 258–266.
7. van SchaikEJ, ChenC, MertensK, WeberMM, SamuelJE (2013) Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat Rev Microbiol 11: 561–573.
8. McDonoughJA, NewtonHJ, KlumS, SwissR, AgaisseH, et al. (2013) Host Pathways Important for Coxiella burnetii Infection Revealed by Genome-Wide RNA Interference Screening. MBio 4: e00606–12.
9. HackstadtT, WilliamsJC (1981) Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc Natl Acad Sci U S A 78: 3240–3244.
10. ColemanSA, FischerER, HoweD, MeadDJ, HeinzenRA (2004) Temporal analysis of Coxiella burnetii morphological differentiation. J Bacteriol 186: 7344–7352.
11. CampoyEM, ZoppinoFC, ColomboMI (2011) The early secretory pathway contributes to the growth of the Coxiella-replicative niche. Infect Immun 79: 402–413.
12. RomanoPS, GutierrezMG, BeronW, RabinovitchM, ColomboMI (2007) The autophagic pathway is actively modulated by phase II Coxiella burnetii to efficiently replicate in the host cell. Cell Microbiol 9: 891–909.
13. GutierrezMG, VazquezCL, MunafoDB, ZoppinoFC, BeronW, et al. (2005) Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell Microbiol 7: 981–993.
14. HeinzenRA, ScidmoreMA, RockeyDD, HackstadtT (1996) Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect Immun 64: 796–809.
15. HoweD, HeinzenRA (2006) Coxiella burnetii inhabits a cholesterol-rich vacuole and influences cellular cholesterol metabolism. Cell Microbiol 8: 496–507.
16. AguileraM, SalinasR, RosalesE, CarminatiS, ColomboMI, et al. (2009) Actin dynamics and Rho GTPases regulate the size and formation of parasitophorous vacuoles containing Coxiella burnetii. Infect Immun 77: 4609–4620.
17. HoweD, MelnicakovaJ, BarakI, HeinzenRA (2003) Fusogenicity of the Coxiella burnetii parasitophorous vacuole. Ann N Y Acad Sci 990: 556–562.
18. HoweD, MelnicakovaJ, BarakI, HeinzenRA (2003) Maturation of the Coxiella burnetii parasitophorous vacuole requires bacterial protein synthesis but not replication. Cell Microbiol 5: 469–480.
19. VerasPS, de ChastellierC, MoreauMF, VilliersV, ThibonM, et al. (1994) Fusion between large phagocytic vesicles: targeting of yeast and other particulates to phagolysosomes that shelter the bacterium Coxiella burnetii or the protozoan Leishmania amazonensis in Chinese hamster ovary cells. J Cell Sci 107(Pt 11): 3065–3076.
20. GomesMS, PaulS, MoreiraAL, AppelbergR, RabinovitchM, et al. (1999) Survival of Mycobacterium avium and Mycobacterium tuberculosis in acidified vacuoles of murine macrophages. Infect Immun 67: 3199–3206.
21. LuhrmannA, RoyCR (2007) Coxiella burnetii inhibits activation of host cell apoptosis through a mechanism that involves preventing cytochrome c release from mitochondria. Infect Immun 75: 5282–5289.
22. VothDE, HoweD, HeinzenRA (2007) Coxiella burnetii inhibits apoptosis in human THP-1 cells and monkey primary alveolar macrophages. Infect Immun 75: 4263–4271.
23. OmslandA, CockrellDC, HoweD, FischerER, VirtanevaK, et al. (2009) Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci U S A 106: 4430–4434.
24. OmslandA (2012) Axenic growth of Coxiella burnetii. Adv Exp Med Biol 984: 215–229.
25. BearePA, HoweD, CockrellDC, OmslandA, HansenB, et al. (2009) Characterization of a Coxiella burnetii ftsZ mutant generated by Himar1 transposon mutagenesis. J Bacteriol 191: 1369–1381.
26. BearePA (2012) Genetic manipulation of Coxiella burnetii. Adv Exp Med Biol 984: 249–271.
27. BearePA, LarsonCL, GilkSD, HeinzenRA (2012) Two systems for targeted gene deletion in Coxiella burnetii. Appl Environ Microbiol 78: 4580–4589.
28. CareyKL, NewtonHJ, LuhrmannA, RoyCR (2011) The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication. PLoS Pathog 7: e1002056.
29. BearePA, GilkSD, LarsonCL, HillJ, SteadCM, et al. (2011) Dot/Icm type IVB secretion system requirements for Coxiella burnetii growth in human macrophages. MBio 2: e00175–00111.
30. SeshadriR, PaulsenIT, EisenJA, ReadTD, NelsonKE, et al. (2003) Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci U S A 100: 5455–5460.
31. ZamboniDS, McGrathS, RabinovitchM, RoyCR (2003) Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system. Mol Microbiol 49: 965–976.
32. ZusmanT, YerushalmiG, SegalG (2003) Functional similarities between the icm/dot pathogenesis systems of Coxiella burnetii and Legionella pneumophila. Infect Immun 71: 3714–3723.
33. HubberA, RoyCR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26: 261–283.
34. LuoZQ, IsbergRR (2004) Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci U S A 101: 841–846.
35. DorerMS, KirtonD, BaderJS, IsbergRR (2006) RNA interference analysis of Legionella in Drosophila cells: exploitation of early secretory apparatus dynamics. PLoS Pathog 2: e34.
36. O'ConnorTJ, BoydD, DorerMS, IsbergRR (2012) Aggravating genetic interactions allow a solution to redundancy in a bacterial pathogen. Science 338: 1440–1444.
37. RoyCR, BergerKH, IsbergRR (1998) Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol Microbiol 28: 663–674.
38. NagaiH, CambronneED, KaganJC, AmorJC, KahnRA, et al. (2005) A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc Natl Acad Sci U S A 102: 826–831.
39. NewtonHJ, McDonoughJA, RoyCR (2013) Effector Protein Translocation by the Coxiella burnetii Dot/Icm Type IV Secretion System Requires Endocytic Maturation of the Pathogen-Occupied Vacuole. PLoS One 8: e54566.
40. PanX, LuhrmannA, SatohA, Laskowski-ArceMA, RoyCR (2008) Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320: 1651–1654.
41. VothDE, HoweD, BearePA, VogelJP, UnsworthN, et al. (2009) The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous, with C-terminal truncations that influence Dot/Icm-mediated secretion. J Bacteriol 191: 4232–4242.
42. ChenC, BangaS, MertensK, WeberMM, GorbaslievaI, et al. (2010) Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc Natl Acad Sci U S A 107: 21755–21760.
43. LuhrmannA, NogueiraCV, CareyKL, RoyCR (2010) Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc Natl Acad Sci U S A 107: 18997–19001.
44. VothDE, BearePA, HoweD, SharmaUM, SamoilisG, et al. (2011) The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates. J Bacteriol 193: 1493–1503.
45. LifshitzZ, BursteinD, PeeriM, ZusmanT, SchwartzK, et al. (2013) Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal. Proc Natl Acad Sci U S A 110: E707–715.
46. WeberMM, ChenC, RowinK, MertensK, GalvanG, et al. (2013) Identification of C. burnetii type IV secretion substrates required for intracellular replication and Coxiella-containing vacuole formation. J Bacteriol 195(17): 3914–24.
47. KlingenbeckL, EckartRA, BerensC, LuhrmannA (2012) The Coxiella burnetii type IV secretion system substrate CaeB inhibits intrinsic apoptosis at the mitochondrial level. Cell Microbiol doi:10.1111/cmi.12066 [epub ahead of print]
48. LarsonCL, BearePA, HoweD, HeinzenRA (2013) Coxiella burnetii effector protein subverts clathrin-mediated vesicular trafficking for pathogen vacuole biogenesis. Proc Natl Acad Sci U S A 110: E4770–4779.
49. MatthewsM, RoyCR (2000) Identification and subcellular localization of the Legionella pneumophila IcmX protein: a factor essential for establishment of a replicative organelle in eukaryotic host cells. Infect Immun 68: 3971–3982.
50. YerushalmiG, ZusmanT, SegalG (2005) Additive effect on intracellular growth by Legionella pneumophila Icm/Dot proteins containing a lipobox motif. Infect Immun 73: 7578–7587.
51. SegalG, ShumanHA (1999) Possible origin of the Legionella pneumophila virulence genes and their relation to Coxiella burnetii. Mol Microbiol 33: 669–670.
52. VogelJP, AndrewsHL, WongSK, IsbergRR (1998) Conjugative transfer by the virulence system of Legionella pneumophila. Science 279: 873–876.
53. SegalG, PurcellM, ShumanHA (1998) Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci U S A 95: 1669–1674.
54. MartinezE, CantetF, FavaL, NorvilleI, BonazziM (2014) Identification of OmpA, a Coxiella burnetii protein involved in host cell invasion, by multi-phenotypic high-content screening. PLoS Pathog 10: e1004013.
55. ZusmanT, AloniG, HalperinE, KotzerH, DegtyarE, et al. (2007) The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol Microbiol 63: 1508–1523.
56. CambronneED, RoyCR (2007) The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS Pathog 3: e188.
57. HamasakiM, FurutaN, MatsudaA, NezuA, YamamotoA, et al. (2013) Autophagosomes form at ER-mitochondria contact sites. Nature 495: 389–393.
58. ItakuraE, Kishi-ItakuraC, MizushimaN (2012) The Hairpin-type Tail-Anchored SNARE Syntaxin 17 Targets to Autophagosomes for Fusion with Endosomes/Lysosomes. Cell 151: 1256–1269.
59. KabeyaY, MizushimaN, UenoT, YamamotoA, KirisakoT, et al. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19: 5720–5728.
60. ChoyA, DancourtJ, MugoB, O'ConnorTJ, IsbergRR, et al. (2012) The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338: 1072–1076.
61. BearePA, SandozKM, LarsonCL, HoweD, KronmillerB, et al. (2014) Essential Role for the Response Regulator PmrA in Coxiella burnetii Type 4B Secretion and Colonization of Mammalian Host Cells. J Bacteriol 196: 1925–1940.
62. TobeT, SasakawaC, OkadaN, HonmaY, YoshikawaM (1992) vacB, a novel chromosomal gene required for expression of virulence genes on the large plasmid of Shigella flexneri. J Bacteriol 174: 6359–6367.
63. ChengZF, ZuoY, LiZ, RuddKE, DeutscherMP (1998) The vacB gene required for virulence in Shigella flexneri and Escherichia coli encodes the exoribonuclease RNase R. J Biol Chem 273: 14077–14080.
64. CanonacoF, HessTA, HeriS, WangT, SzyperskiT, et al. (2001) Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett 204: 247–252.
65. FlachmannR, KunzN, SeifertJ, GutlichM, WientjesFJ, et al. (1988) Molecular biology of pyridine nucleotide biosynthesis in Escherichia coli. Cloning and characterization of quinolinate synthesis genes nadA and nadB. Eur J Biochem 175: 221–228.
66. ShippyDC, EakleyNM, BochslerPN, ChopraAK, FadlAA (2011) Biological and virulence characteristics of Salmonella enterica serovar Typhimurium following deletion of glucose-inhibited division (gidA) gene. Microb Pathog 50: 303–313.
67. von MeyenburgK, JorgensenBB, NielsenJ, HansenFG (1982) Promoters of the atp operon coding for the membrane-bound ATP synthase of Escherichia coli mapped by Tn10 insertion mutations. Mol Gen Genet 188: 240–248.
68. O'ConnorTJ, AdepojuY, BoydD, IsbergRR (2011) Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansion. Proc Natl Acad Sci U S A 108: 14733–14740.
69. YuL, McPheeCK, ZhengL, MardonesGA, RongY, et al. (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465: 942–946.
70. SanjuanMA, DillonCP, TaitSW, MoshiachS, DorseyF, et al. (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450: 1253–1257.
71. OmslandA, BearePA, HillJ, CockrellDC, HoweD, et al. (2011) Isolation from animal tissue and genetic transformation of Coxiella burnetii are facilitated by an improved axenic growth medium. Appl Environ Microbiol 77: 3720–3725.
72. LiMZ, ElledgeSJ (2012) SLIC: a method for sequence- and ligation-independent cloning. Methods Mol Biol 852: 51–59.
73. TanidaI, UenoT, KominamiE (2008) LC3 and Autophagy. Methods Mol Biol 445: 77–88.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 7
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Molecular and Cellular Mechanisms of KSHV Oncogenesis of Kaposi's Sarcoma Associated with HIV/AIDS
- Holobiont–Holobiont Interactions: Redefining Host–Parasite Interactions
- Helminth Infections, Type-2 Immune Response, and Metabolic Syndrome
- BCKDH: The Missing Link in Apicomplexan Mitochondrial Metabolism Is Required for Full Virulence of and