Distinct Lipid A Moieties Contribute to Pathogen-Induced Site-Specific Vascular Inflammation
Several human pathogens express structurally divergent forms of lipid A, the endotoxic portion of lipopolysaccharide (LPS), as a strategy to evade host innate immune detection and establish persistent infection. Expression of modified lipid A species promotes pathogen evasion of host recognition by Toll-like receptor-4 (TLR4) and the non-canonical inflammasome. The Gram-negative oral anaerobe, Porphyromonas gingivalis, expresses lipid A structures that function as TLR4 agonists or antagonists, or are immunologically inert. It is currently unclear how modulation of P. gingivalis lipid A expression contributes to innate immune recognition, survival, and the ability of the pathogen to induce local and systemic inflammation. In this study, we demonstrate that P. gingivalis expression of antagonist lipid A species results in attenuated production of proinflammatory mediators and evasion of non-canonical inflammasome activation, facilitating bacterial survival in the macrophage. Infection of atherosclerosis-prone ApoE−/− mice with this strain resulted in progression of chronic inflammation in the vasculature. Notably, the ability of P. gingivalis to induce local inflammatory bone loss was independent of lipid A modifications, supporting distinct mechanisms for induction of local versus systemic inflammation. Our work demonstrates that evasion of immune detection at TLR4 contributes to pathogen persistence and facilitates low-grade chronic inflammation.
Vyšlo v časopise:
Distinct Lipid A Moieties Contribute to Pathogen-Induced Site-Specific Vascular Inflammation. PLoS Pathog 10(7): e32767. doi:10.1371/journal.ppat.1004215
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004215
Souhrn
Several human pathogens express structurally divergent forms of lipid A, the endotoxic portion of lipopolysaccharide (LPS), as a strategy to evade host innate immune detection and establish persistent infection. Expression of modified lipid A species promotes pathogen evasion of host recognition by Toll-like receptor-4 (TLR4) and the non-canonical inflammasome. The Gram-negative oral anaerobe, Porphyromonas gingivalis, expresses lipid A structures that function as TLR4 agonists or antagonists, or are immunologically inert. It is currently unclear how modulation of P. gingivalis lipid A expression contributes to innate immune recognition, survival, and the ability of the pathogen to induce local and systemic inflammation. In this study, we demonstrate that P. gingivalis expression of antagonist lipid A species results in attenuated production of proinflammatory mediators and evasion of non-canonical inflammasome activation, facilitating bacterial survival in the macrophage. Infection of atherosclerosis-prone ApoE−/− mice with this strain resulted in progression of chronic inflammation in the vasculature. Notably, the ability of P. gingivalis to induce local inflammatory bone loss was independent of lipid A modifications, supporting distinct mechanisms for induction of local versus systemic inflammation. Our work demonstrates that evasion of immune detection at TLR4 contributes to pathogen persistence and facilitates low-grade chronic inflammation.
Zdroje
1. AkiraS, TakedaK, KaishoT (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2: 675–680 doi:10.1038/90609
2. MunfordRS, VarleyAW (2006) Shield as signal: lipopolysaccharides and the evolution of immunity to gram-negative bacteria. PLoS Pathog 2: e67 doi:10.1371/journal.ppat.0020067
3. MillerSI, ErnstRK, BaderMW (2005) LPS, TLR4 and infectious disease diversity. Nat Rev Micro 3: 36–46 doi:10.1038/nrmicro1068
4. NeedhamBD, TrentMS (2013) Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Micro 11: 467–481 doi:10.1038/nrmicro3047
5. RaetzCRH, WhitfieldC (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71: 635–700 doi:10.1146/annurev.biochem.71.110601.135414
6. CoatsSR, BerezowAB, ToTT, JainS, BainbridgeBW, et al. (2011) The lipid A phosphate position determines differential host Toll-like receptor 4 responses to phylogenetically related symbiotic and pathogenic bacteria. Infection and Immunity 79: 203–210 doi:10.1128/IAI.00937-10
7. CullenTW, GilesDK, WolfLN, EcobichonC, BonecaIG, et al. (2011) Helicobacter pylori versus the host: remodeling of the bacterial outer membrane is required for survival in the gastric mucosa. PLoS Pathog 7: e1002454 doi:10.1371/journal.ppat.1002454
8. NeumeisterB, FaigleM, SommerM, ZähringerU, StelterF, et al. (1998) Low endotoxic potential of Legionella pneumophila lipopolysaccharide due to failure of interaction with the monocyte lipopolysaccharide receptor CD14. Infection and Immunity 66: 4151–4157.
9. KawaharaK, TsukanoH, WatanabeH, LindnerB, MatsuuraM (2002) Modification of the structure and activity of lipid A in Yersinia pestis lipopolysaccharide by growth temperature. Infection and Immunity 70: 4092–4098.
10. HajjarAM, HarveyMD, ShafferSA, GoodlettDR, SjöstedtA, et al. (2006) Lack of in vitro and in vivo recognition of Francisella tularensis subspecies lipopolysaccharide by Toll-like receptors. Infection and Immunity 74: 6730–6738 doi:10.1128/IAI.00934-06
11. RebeilR, ErnstRK, JarrettCO, AdamsKN, MillerSI, et al. (2006) Characterization of late acyltransferase genes of Yersinia pestis and their role in temperature-dependent lipid A variation. J Bacteriol 188: 1381–1388 doi:10.1128/JB.188.4.1381-1388.2006
12. LiY, PowellDA, ShafferSA, RaskoDA, PelletierMR, et al. (2012) LPS remodeling is an evolved survival strategy for bacteria. PNAS 109: 8716–8721 doi:10.1073/pnas.1202908109
13. MaeshimaN, FernandezRC (2013) Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front Cell Infect Microbiol 3: 3 doi:10.3389/fcimb.2013.00003
14. KayagakiN, WongMT, StoweIB, RamaniSR, GonzalezLC, et al. (2013) Noncanonical Inflammasome Activation by Intracellular LPS Independent of TLR4. Science 341: 1246–1249 doi:10.1126/science.1240248
15. FranchiL, EigenbrodT, Muñoz-PlanilloR, NuñezG (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10: 241–247 doi:10.1038/ni.1703
16. TaxmanDJ, HuangMT-H, TingJPY (2010) Inflammasome inhibition as a pathogenic stealth mechanism. Cell Host Microbe 8: 7–11 doi:10.1016/j.chom.2010.06.005
17. ShimadaK, CrotherTR, KarlinJ, DagvadorjJ, ChibaN, et al. (2012) Oxidized Mitochondrial DNA Activates the NLRP3 Inflammasome during Apoptosis. Immunity 36: 401–414 doi:10.1016/j.immuni.2012.01.009
18. BainbridgeBW, CoatsSR, DarveauRP (2002) Porphyromonas gingivalis lipopolysaccharide displays functionally diverse interactions with the innate host defense system. Ann Periodontol 7: 29–37 doi:10.1902/annals.2002.7.1.29
19. KumadaH, HaishimaY, UmemotoT, TanamotoK (1995) Structural study on the free lipid A isolated from lipopolysaccharide of Porphyromonas gingivalis. J Bacteriol 177: 2098–2106.
20. CoatsSR, PhamT-TT, BainbridgeBW, ReifeRA, DarveauRP (2005) MD-2 mediates the ability of tetra-acylated and penta-acylated lipopolysaccharides to antagonize Escherichia coli lipopolysaccharide at the TLR4 signaling complex. J Immunol 175: 4490–4498.
21. ReifeRA, CoatsSR, Al-QutubM, DixonDM, BrahamPA, et al. (2006) Porphyromonas gingivalis lipopolysaccharide lipid A heterogeneity: differential activities of tetra- and penta-acylated lipid A structures on E-selectin expression and TLR4 recognition. Cellular Microbiology 8: 857–868 doi:10.1111/j.1462-5822.2005.00672.x
22. Al-QutubMN, BrahamPH, Karimi-NaserLM, LiuX, GencoCA, et al. (2006) Hemin-Dependent Modulation of the Lipid A Structure of Porphyromonas gingivalis Lipopolysaccharide. Infection and Immunity 74: 4474–4485 doi:10.1128/IAI.01924-05
23. CoatsSR, JonesJW, DoCT, BrahamPH, BainbridgeBW, et al. (2009) Human Toll-like receptor 4 responses to P. gingivalisare regulated by lipid A 1- and 4′-phosphatase activities. Cellular Microbiology 11: 1587–1599 doi:10.1111/j.1462-5822.2009.01349.x
24. CurtisMA, PercivalRS, DevineD, DarveauRP, CoatsSR, et al. (2011) Temperature-dependent modulation of Porphyromonas gingivalis lipid A structure and interaction with the innate host defenses. Infection and Immunity 79: 1187–1193 doi:10.1128/IAI.00900-10
25. RangarajanM, Aduse-OpokuJ, ParamonovN, HashimA, BostanciN, et al. (2008) Identification of a second lipopolysaccharide in Porphyromonas gingivalis W50. J Bacteriol 190: 2920–2932 doi:10.1128/JB.01868-07
26. HerathTDK, DarveauRP, SeneviratneCJ, WangC-Y, WangY, et al. (2013) Tetra- and penta-acylated lipid A structures of Porphyromonas gingivalis LPS differentially activate TLR4-mediated NF-κB signal transduction cascade and immuno-inflammatory response in human gingival fibroblasts. PLoS ONE 8: e58496 doi:10.1371/journal.pone.0058496
27. HayashiC, GudinoCV, GibsonFCIII, GencoCA (2010) REVIEW: Pathogen-induced inflammation at sites distant from oral infection: bacterial persistence and induction of cell-specific innate immune inflammatory pathways. Mol Oral Microbiol 25: 305–316 doi:10.1111/j.2041-1014.2010.00582.x
28. OliverRC, BrownLJ, LöeH (1998) Periodontal diseases in the United States population. J Periodontol 69: 269–278.
29. PihlstromBL, MichalowiczBS, JohnsonNW (2005) Periodontal diseases. Lancet 366: 1809–1820 doi:10.1016/S0140-6736(05)67728-8
30. BohnstedtS, CullinanMP, FordPJ, PalmerJE, LeishmanSJ, et al. (2010) High antibody levels to P. gingivalis in cardiovascular disease. Journal of Dental Research 89: 938–942 doi:10.1177/0022034510370817
31. TonettiMS (2009) Periodontitis and risk for atherosclerosis: an update on intervention trials. J Clin Periodontol 36 (Suppl 10) 15–19 doi:10.1111/j.1600-051X.2009.01417.x
32. MichaudDS, IzardJ, Wilhelm-BenartziCS, YouD-H, GroteVA, et al. (2013) Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut 62: 1764–1770 doi:10.1136/gutjnl-2012-303006
33. HaraszthyVI, ZambonJJ, TrevisanM, ZeidM, GencoRJ (2000) Identification of periodontal pathogens in atheromatous plaques. J Periodontol 71: 1554–1560 doi:10.1902/jop.2000.71.10.1554
34. KozarovEV, DornBR, ShelburneCE, DunnWA, Progulske-FoxA (2005) Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arteriosclerosis, Thrombosis, and Vascular Biology 25: e17–e18 doi:10.1161/01.ATV.0000155018.67835.1a
35. RosenfeldME, CampbellLA (2011) Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb Haemost 106: 858–867 doi:10.1160/TH11-06-0392
36. GibsonFC, HongC, ChouH-H, YumotoH, ChenJ, et al. (2004) Innate immune recognition of invasive bacteria accelerates atherosclerosis in apolipoprotein E-deficient mice. Circulation 109: 2801–2806 doi:10.1161/01.CIR.0000129769.17895.F0
37. HayashiC, MadrigalAG, LiuX, UkaiT, GoswamiS, et al. (2010) Pathogen-mediated inflammatory atherosclerosis is mediated in part via Toll-like receptor 2-induced inflammatory responses. J Innate Immun 2: 334–343 doi:10.1159/000314686
38. PapadopoulosG, WeinbergEO, MassariP, GibsonFC, WetzlerLM, et al. (2013) Macrophage-specific TLR2 signaling mediates pathogen-induced TNF-dependent inflammatory oral bone loss. The Journal of Immunology 190: 1148–1157 doi:10.4049/jimmunol.1202511
39. JainS, CoatsSR, ChangAM, DarveauRP (2013) A Novel Class of Lipoprotein Lipase-Sensitive Molecules Mediates Toll-Like Receptor 2 Activation by Porphyromonas gingivalis. Infection and Immunity 81: 1277–1286 doi:10.1128/IAI.01036-12
40. DaveyM, LiuX, UkaiT, JainV, GudinoCV, et al. (2008) Bacterial Fimbriae Stimulate Proinflammatory Activation in the Endothelium through Distinct TLRs. The Journal of Immunology 180: 2187–2195.
41. NicholsFC, BajramiB, ClarkRB, HousleyW, YaoX (2012) Free Lipid A Isolated from Porphyromonas gingivalis Lipopolysaccharide Is Contaminated with Phosphorylated Dihydroceramide Lipids: Recovery in Diseased Dental Samples. Infection and Immunity 80: 860–874 doi:10.1128/IAI.06180-11
42. HayashiC, PapadopoulosG, GudinoCV, WeinbergEO, BarthKR, et al. (2012) Protective Role for TLR4 Signaling in Atherosclerosis Progression as Revealed by Infection with a Common Oral Pathogen. The Journal of Immunology 189: 3681–3688 doi:10.4049/jimmunol.1201541
43. ZenobiaC, HasturkH, NguyenD, Van DykeTE, KantarciA, et al. (2014) Porphyromonas gingivalis Lipid A Phosphatase Activity Is Critical for Colonization and Increasing the Commensal Load in the Rabbit Ligature Model. Infection and Immunity 82: 650–659 doi:10.1128/IAI.01136-13
44. TschoppJ, MartinonF, BurnsK (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4: 95–104 doi:10.1038/nrm1019
45. BostanciN, AllakerRP, BelibasakisGN, RangarajanM, CurtisMA, et al. (2007) Porphyromonas gingivalis antagonises Campylobacter rectus induced cytokine production by human monocytes. Cytokine 39: 147–156 doi:10.1016/j.cyto.2007.07.002
46. TaxmanDJ, SwansonKV, BrogliePM, WenH, Holley-GuthrieE, et al. (2012) Porphyromonas gingivalis Mediates Inflammasome Repression in Polymicrobial Cultures through a Novel Mechanism Involving Reduced Endocytosis. Journal of Biological Chemistry 287: 32791–32799 doi:10.1074/jbc.M112.401737
47. MariathasanS, MonackDM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7: 31–40 doi:10.1038/nri1997
48. KayagakiN, WarmingS, LamkanfiM, Vande WalleL, LouieS, et al. (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479: 117–121 doi:10.1038/nature10558
49. RathinamVAK, VanajaSK, WaggonerL, SokolovskaA, BeckerC, et al. (2012) TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150: 606–619 doi:10.1016/j.cell.2012.07.007
50. BrozP, MonackDM (2013) Noncanonical inflammasomes: caspase-11 activation and effector mechanisms. PLoS Pathog 9: e1003144 doi:10.1371/journal.ppat.1003144
51. BakerPJ, EvansRT, RoopenianDC (1994) Oral infection with Porphyromonas gingivalis and induced alveolar bone loss in immunocompetent and severe combined immunodeficient mice. Arch Oral Biol 39: 1035–1040.
52. ChouH-H, YumotoH, DaveyM, TakahashiY, MiyamotoT, et al. (2005) Porphyromonas gingivalis fimbria-dependent activation of inflammatory genes in human aortic endothelial cells. Infection and Immunity 73: 5367–5378 doi:10.1128/IAI.73.9.5367-5378.2005
53. HayashiC, ViereckJ, HuaN, PhinikaridouA, MadrigalAG, et al. (2011) Porphyromonas gingivalis accelerates inflammatory atherosclerosis in the innominate artery of ApoE deficient mice. Atherosclerosis 215: 52–59 doi:10.1016/j.atherosclerosis.2010.12.009
54. BurnsE, BachrachG, ShapiraL, NussbaumG (2006) Cutting Edge: TLR2 is required for the innate response to Porphyromonas gingivalis: activation leads to bacterial persistence and TLR2 deficiency attenuates induced alveolar bone resorption. J Immunol 177: 8296–8300.
55. UkaiT, YumotoH, GibsonFC, GencoCA (2008) Macrophage-Elicited Osteoclastogenesis in Response to Bacterial Stimulation Requires Toll-Like Receptor 2-Dependent Tumor Necrosis Factor-Alpha Production. Infection and Immunity 76: 812–819 doi:10.1128/IAI.01241-07
56. CoatsSR, DoCT, Karimi-NaserLM, BrahamPH, DarveauRP (2007) Antagonistic lipopolysaccharides block E. coli lipopolysaccharide function at human TLR4 via interaction with the human MD-2 lipopolysaccharide binding site. Cellular Microbiology 9: 1191–1202 doi:10.1111/j.1462-5822.2006.00859.x
57. MontminySW, KhanN, McGrathS, WalkowiczMJ, SharpF, et al. (2006) Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol 7: 1066–1073 doi:10.1038/ni1386
58. CiganaC, CurcurùL, LeoneMR, IeranòT, LorèNI, et al. (2009) Pseudomonas aeruginosa exploits lipid A and muropeptides modification as a strategy to lower innate immunity during cystic fibrosis lung infection. PLoS ONE 4: e8439 doi:10.1371/journal.pone.0008439
59. DavisBK, WenH, TingJPY (2011) The Inflammasome NLRs in Immunity, Inflammation, and Associated Diseases. Annu Rev Immunol 29: 707–735 doi:10.1146/annurev-immunol-031210-101405
60. NaikiY, SorrentinoR, WongMH, MichelsenKS, ShimadaK, et al. (2008) TLR/MyD88 and liver X receptor alpha signaling pathways reciprocally control Chlamydia pneumoniae-induced acceleration of atherosclerosis. The Journal of Immunology 181: 7176–7185.
61. MichelsenKS, WongMH, ShahPK, ZhangW, YanoJ, et al. (2004) Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci USA 101: 10679–10684 doi:10.1073/pnas.0403249101
62. ColeJE, MitraAT, MonacoC (2010) Treating atherosclerosis: the potential of Toll-like receptors as therapeutic targets. Expert Rev Cardiovasc Ther 8: 1619–1635 doi:10.1586/erc.10.149
63. LeonCG, ToryR, JiaJ, SivakO, WasanKM (2008) Discovery and development of toll-like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases. Pharm Res 25: 1751–1761 doi:10.1007/s11095-008-9571-x
64. CarrionJ, ScisciE, MilesB, SabinoGJ, ZeituniAE, et al. (2012) Microbial carriage state of peripheral blood dendritic cells (DCs) in chronic periodontitis influences DC differentiation, atherogenic potential. The Journal of Immunology 189: 3178–3187 doi:10.4049/jimmunol.1201053
65. WangM, ShakhatrehM-AK, JamesD, LiangS, NishiyamaS-I, et al. (2007) Fimbrial proteins of porphyromonas gingivalis mediate in vivo virulence and exploit TLR2 and complement receptor 3 to persist in macrophages. J Immunol 179: 2349–2358.
66. AmerAO, ByrneBG, SwansonMS (2005) Macrophages rapidly transfer pathogens from lipid raft vacuoles to autophagosomes. Autophagy 1: 53–58.
67. SimonsK, GruenbergJ (2000) Jamming the endosomal system: lipid rafts and lysosomal storage disease. Trends Cell Biol 10: 459–462.
68. GibsonFCIII, GencoCA (2007) Porphyromonas gingivalis Mediated Periodontal Disease and Atheroscerlosis: Disparate Disease with Commonalities in Pathogenesis Through TLRs. Current Pharmaceutical Design 13: 3665–3675.
69. HajishengallisG, LiangS, PayneMA, HashimA, JotwaniR, et al. (2011) Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 10: 497–506 doi:10.1016/j.chom.2011.10.006
70. DinarelloCA (2011) A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur J Immunol 41: 1203–1217 doi:10.1002/eji.201141550
71. TabasI, GlassCK (2013) Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339: 166–172 doi:10.1126/science.1230720
72. RidkerPM, ThurenT, ZalewskiA, LibbyP (2011) Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J 162: 597–605 doi:10.1016/j.ahj.2011.06.012
73. TakahashiY, DaveyM, YumotoH, GibsonFCIII, GencoCA (2006) Fimbria-dependent activation of pro-inflammatory molecules in Porphyromonas gingivalis infected human aortic endothelial cells. Cellular Microbiology 8: 738–757 doi:10.1111/j.1462-5822.2005.00661.x
74. CoatsSR, ToTT, JainS, BrahamPH, DarveauRP (2009) Porphyromonas gingivalis resistance to polymyxin B is determined by the lipid A 4′-phosphatase, PGN_0524. Int J Oral Sci 1: 126–135 doi:10.4248/IJOS.09062
75. MadrigalAG, BarthK, PapadopoulosG, GencoCA (2012) Pathogen-Mediated Proteolysis of the Cell Death Regulator RIPK1 and the Host Defense Modulator RIPK2 in Human Aortic Endothelial Cells. PLoS Pathog 8: e1002723 doi:10.1371/journal.ppat.1002723.g011
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 7
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Molecular and Cellular Mechanisms of KSHV Oncogenesis of Kaposi's Sarcoma Associated with HIV/AIDS
- Holobiont–Holobiont Interactions: Redefining Host–Parasite Interactions
- Helminth Infections, Type-2 Immune Response, and Metabolic Syndrome
- BCKDH: The Missing Link in Apicomplexan Mitochondrial Metabolism Is Required for Full Virulence of and