#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

BCKDH: The Missing Link in Apicomplexan Mitochondrial Metabolism Is Required for Full Virulence of and


The mitochondrial tricarboxylic acid (TCA) cycle is one of the core metabolic pathways of eukaryotic cells, which contributes to cellular energy generation and provision of essential intermediates for macromolecule synthesis. Apicomplexan parasites possess the complete sets of genes coding for the TCA cycle. However, they lack a key mitochondrial enzyme complex that is normally required for production of acetyl-CoA from pyruvate, allowing further oxidation of glycolytic intermediates in the TCA cycle. This study unequivocally resolves how acetyl-CoA is generated in the mitochondrion using a combination of genetic, biochemical and metabolomic approaches. Specifically, we show that T. gondii and P. bergei utilize a second mitochondrial dehydrogenase complex, BCKDH, that is normally involved in branched amino acid catabolism, to convert pyruvate to acetyl-CoA and further catabolize glucose in the TCA cycle. In T. gondii, loss of BCKDH leads to global defects in glucose metabolism, increased gluconeogenesis and a marked attenuation of growth in host cells and virulence in animals. In P. bergei, loss of BCKDH leads to a defect in parasite proliferation in mature red blood cells, although the mutant retains the capacity to proliferate within 'immature' reticulocytes, highlighting the role of host metabolism/physiology on the development of Plasmodium asexual stages.


Vyšlo v časopise: BCKDH: The Missing Link in Apicomplexan Mitochondrial Metabolism Is Required for Full Virulence of and. PLoS Pathog 10(7): e32767. doi:10.1371/journal.ppat.1004263
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004263

Souhrn

The mitochondrial tricarboxylic acid (TCA) cycle is one of the core metabolic pathways of eukaryotic cells, which contributes to cellular energy generation and provision of essential intermediates for macromolecule synthesis. Apicomplexan parasites possess the complete sets of genes coding for the TCA cycle. However, they lack a key mitochondrial enzyme complex that is normally required for production of acetyl-CoA from pyruvate, allowing further oxidation of glycolytic intermediates in the TCA cycle. This study unequivocally resolves how acetyl-CoA is generated in the mitochondrion using a combination of genetic, biochemical and metabolomic approaches. Specifically, we show that T. gondii and P. bergei utilize a second mitochondrial dehydrogenase complex, BCKDH, that is normally involved in branched amino acid catabolism, to convert pyruvate to acetyl-CoA and further catabolize glucose in the TCA cycle. In T. gondii, loss of BCKDH leads to global defects in glucose metabolism, increased gluconeogenesis and a marked attenuation of growth in host cells and virulence in animals. In P. bergei, loss of BCKDH leads to a defect in parasite proliferation in mature red blood cells, although the mutant retains the capacity to proliferate within 'immature' reticulocytes, highlighting the role of host metabolism/physiology on the development of Plasmodium asexual stages.


Zdroje

1. WeissLM, DubeyJP (2009) Toxoplasmosis: A history of clinical observations. Int J Parasitol 39: 895–901.

2. DesaiSA, KrogstadDJ, McCleskeyEW (1993) A nutrient-permeable channel on the intraerythrocytic malaria parasite. Nature 362: 643–646.

3. SchwabJC, BeckersCJ, JoinerKA (1994) The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve. Proc Natl Acad Sci U S A 91: 509–513.

4. JensenMD, ConleyM, HelstowskiLD (1983) Culture of Plasmodium falciparum: the role of pH, glucose, and lactate. J Parasitol 69: 1060–1067.

5. RothEJr (1990) Plasmodium falciparum carbohydrate metabolism: a connection between host cell and parasite. Blood Cells 16: 453–460 discussion 461–456.

6. Al-AnoutiF, TomavoS, ParmleyS, AnanvoranichS (2004) The expression of lactate dehydrogenase is important for the cell cycle of Toxoplasma gondii. J Biol Chem 279: 52300–52311.

7. van DoorenGG, StimmlerLM, McFaddenGI (2006) Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol Rev 30: 596–630.

8. PomelS, LukFC, BeckersCJ (2008) Host cell egress and invasion induce marked relocations of glycolytic enzymes in Toxoplasma gondii tachyzoites. PLoS Pathog 4: e1000188.

9. ShermanIW (1979) Biochemistry of Plasmodium (malarial parasites). Microbiol Rev 43: 453–495.

10. BlumeM, HliscsM, Rodriguez-ContrerasD, SanchezM, LandfearS, et al. (2011) A constitutive pan-hexose permease for the Plasmodium life cycle and transgenic models for screening of antimalarial sugar analogs. FASEB J 25: 1218–1229.

11. SlavicK, StraschilU, ReiningerL, DoerigC, MorinC, et al. (2010) Life cycle studies of the hexose transporter of Plasmodium species and genetic validation of their essentiality. Mol Microbiol 75: 1402–1413.

12. CrawfordMJ, Thomsen-ZiegerN, RayM, SchachtnerJ, RoosDS, et al. (2006) Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplast. EMBO J 25: 3214–3222.

13. FothBJ, StimmlerLM, HandmanE, CrabbBS, HodderAN, et al. (2005) The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast. Mol Microbiol 55: 39–53.

14. FleigeT, FischerK, FergusonDJ, GrossU, BohneW (2007) Carbohydrate metabolism in the Toxoplasma gondii apicoplast: localization of three glycolytic isoenzymes, the single pyruvate dehydrogenase complex, and a plastid phosphate translocator. Eukaryot Cell 6: 984–996.

15. RalphSA (2005) Strange organelles–Plasmodium mitochondria lack a pyruvate dehydrogenase complex. Mol Microbiol 55: 1–4.

16. SeeberF, LimenitakisJ, Soldati-FavreD (2008) Apicomplexan mitochondrial metabolism: a story of gains, losses and retentions. Trends Parasitol 24: 468–478.

17. DanneJC, GornikSG, MacraeJI, McConvilleMJ, WallerRF (2013) Alveolate mitochondrial metabolic evolution: dinoflagellates force reassessment of the role of parasitism as a driver of change in apicomplexans. Mol Biol Evol 30: 123–139.

18. PossentiA, FratiniF, FantozziL, PozioE, DubeyJP, et al. (2013) Global proteomic analysis of the oocyst/sporozoite of Toxoplasma gondii reveals commitment to a host-independent lifestyle. BMC Genomics 14: 183.

19. LimenitakisJ, OppenheimRD, CreekDJ, FothBJ, BarrettMP, et al. (2013) The 2-methylcitrate cycle is implicated in the detoxification of propionate in Toxoplasma gondii. Mol Microbiol 87: 894–908.

20. MacRaeJI, SheinerL, NahidA, TonkinC, StriepenB, et al. (2012) Mitochondrial metabolism of glucose and glutamine is required for intracellular growth of Toxoplasma gondii. Cell Host Microbe 12: 682–692.

21. MacRaeJI, DixonMW, DearnleyMK, ChuaHH, ChambersJM, et al. (2013) Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum. BMC Biol 11: 67.

22. CobboldSA, VaughanAM, LewisIA, PainterHJ, CamargoN, et al. (2013) Kinetic flux profiling elucidates two independent acetyl-CoA biosynthetic pathways in Plasmodium falciparum. J Biol Chem 288: 3638–3650.

23. StormJ, SethiaS, BlackburnGJ, ChokkathukalamA, WatsonDG, et al. (2014) Phosphoenolpyruvate Carboxylase Identified as a Key Enzyme in Erythrocytic Plasmodium falciparum Carbon Metabolism. PLoS Pathog 10: e1003876.

24. FoxBA, BzikDJ (2002) De novo pyrimidine biosynthesis is required for virulence of Toxoplasma gondii. Nature 415: 926–929.

25. HydeJE (2007) Targeting purine and pyrimidine metabolism in human apicomplexan parasites. Curr Drug Targets 8: 31–47.

26. KeH, MorriseyJM, GanesanSM, PainterHJ, MatherMW, et al. (2011) Variation among Plasmodium falciparum strains in their reliance on mitochondrial electron transport chain function. Eukaryot Cell 10: 1053–1061.

27. BoysenKE, MatuschewskiK (2011) Arrested oocyst maturation in Plasmodium parasites lacking type II NADH:ubiquinone dehydrogenase. J Biol Chem 286: 32661–32671.

28. HinoA, HiraiM, TanakaTQ, WatanabeY, MatsuokaH, et al. (2012) Critical roles of the mitochondrial complex II in oocyst formation of rodent malaria parasite Plasmodium berghei. J Biochem 152: 259–268.

29. SrivastavaIK, RottenbergH, VaidyaAB (1997) Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem 272: 3961–3966.

30. DailyJP, ScanfeldD, PochetN, Le RochK, PlouffeD, et al. (2007) Distinct physiological states of Plasmodium falciparum in malaria-infected patients. Nature 450: 1091–1095.

31. SanaTR, GordonDB, FischerSM, TichySE, KitagawaN, et al. (2013) Global Mass Spectrometry Based Metabolomics Profiling of Erythrocytes Infected with Plasmodium falciparum. PLoS One 8: e60840.

32. AraujoFG, HuskinsonJ, RemingtonJS (1991) Remarkable in vitro and in vivo activities of the hydroxynaphthoquinone 566C80 against tachyzoites and tissue cysts of Toxoplasma gondii. Antimicrob Agents Chemother 35: 293–299.

33. ChanXW, WrengerC, StahlK, BergmannB, WinterbergM, et al. (2013) Chemical and genetic validation of thiamine utilization as an antimalarial drug target. Nat Commun 4: 2060.

34. ÆvarssonA, ChuangJL, WynnRM, TurleyS, ChuangDT, et al. (2000) Crystal structure of human branched-chain alpha-ketoacid dehydrogenase and the molecular basis of multienzyme complex deficiency in maple syrup urine disease. Structure 8: 277–291.

35. HuynhMH, CarruthersVB (2009) Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. Eukaryot Cell 8: 530–539.

36. FoxBA, RistucciaJG, GigleyJP, BzikDJ (2009) Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining. Eukaryot Cell 8: 520–529.

37. MombaertsP, IacominiJ, JohnsonRS, HerrupK, TonegawaS, et al. (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68: 869–877.

38. PainterHJ, MorriseyJM, MatherMW, VaidyaAB (2007) Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature 446: 88–91.

39. BunikVI, DegtyarevD (2008) Structure-function relationships in the 2-oxo acid dehydrogenase family: substrate-specific signatures and functional predictions for the 2-oxoglutarate dehydrogenase-like proteins. Proteins 71: 874–890.

40. AndrewsFH, McLeishMJ (2012) Substrate specificity in thiamin diphosphate-dependent decarboxylases. Bioorg Chem 43: 26–36.

41. BrickerDK, TaylorEB, SchellJC, OrsakT, BoutronA, et al. (2012) A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337: 96–100.

42. HerzigS, RaemyE, MontessuitS, VeutheyJL, ZamboniN, et al. (2012) Identification and functional expression of the mitochondrial pyruvate carrier. Science 337: 93–96.

43. BlumeM, Rodriguez-ContrerasD, LandfearS, FleigeT, Soldati-FavreD, et al. (2009) Host-derived glucose and its transporter in the obligate intracellular pathogen Toxoplasma gondii are dispensable by glutaminolysis. Proc Natl Acad Sci U S A 106: 12998–13003.

44. WellenKE, HatzivassiliouG, SachdevaUM, BuiTV, CrossJR, et al. (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324: 1076–1080.

45. WangQ, ZhangY, YangC, XiongH, LinY, et al. (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327: 1004–1007.

46. ZhaoS, XuW, JiangW, YuW, LinY, et al. (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327: 1000–1004.

47. JiangW, WangS, XiaoM, LinY, ZhouL, et al. (2011) Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell 43: 33–44.

48. JeffersV, SullivanWJJr (2012) Lysine acetylation is widespread on proteins of diverse function and localization in the protozoan parasite Toxoplasma gondii. Eukaryot Cell 11: 735–742.

49. YamasakiM, OtsukaY, YamatoO, TajimaM, MaedeY (2000) The cause of the predilection of Babesia gibsoni for reticulocytes. J Vet Med Sci 62: 737–741.

50. YamasakiM, YamatoO, HossainMA, JeongJ-R, ChangH-S, et al. (2002) Babesia gibsoni: preferential multiplication in reticulocytes is related to the presence of mitochondria and a high concentration of adenosine 5'-triphosphate in the cells. Experimental Parasitology 102: 164–169.

51. HallAC, ElloryJC (1986) Evidence for the presence of volume-sensitive KCl transport in 'young' human red cells. Biochim Biophys Acta 858: 317–320.

52. KirkK, Poli de FigueiredoCE, ElfordBC, ElloryJC (1992) Effect of cell age on erythrocyte choline transport: implications for the increased choline permeability of malaria-infected erythrocytes. Biochem J 283 (Pt 2) 617–619.

53. LiuY, PromeneurD, RojekA, KumarN, FrokiaerJ, et al. (2007) Aquaporin 9 is the major pathway for glycerol uptake by mouse erythrocytes, with implications for malarial virulence. Proc Natl Acad Sci U S A 104: 12560–12564.

54. MonsB (1990) Preferential invasion of malarial merozoites into young red blood cells. Blood Cells 16: 299–312.

55. CogswellFB (1992) The hypnozoite and relapse in primate malaria. Clin Microbiol Rev 5: 26–35.

56. PlattnerF, YarovinskyF, RomeroS, DidryD, CarlierMF, et al. (2008) Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host Microbe 3: 77–87.

57. SoldatiD, BoothroydJC (1993) Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii. Science 260: 349–352.

58. DonaldRG, CarterD, UllmanB, RoosDS (1996) Insertional tagging, cloning, and expression of the Toxoplasma gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase gene. Use as a selectable marker for stable transformation. J Biol Chem 271: 14010–14019.

59. SindenRE, ButcherGA, BeetsmaAL (2002) Maintenance of the Plasmodium berghei life cycle. Methods Mol Med 72: 25–40.

60. DessensJT, BeetsmaAL, DimopoulosG, WengelnikK, CrisantiA, et al. (1999) CTRP is essential for mosquito infection by malaria ookinetes. EMBO J 18: 6221–6227.

61. JanseCJ, RamesarJ, WatersAP (2006) High-efficiency transfection and drug selection of genetically transformed blood stages of the rodent malaria parasite Plasmodium berghei. Nat Protoc 1: 346–356.

62. BlancL, LiuJ, VidalM, ChasisJA, AnX, et al. (2009) The water channel aquaporin-1 partitions into exosomes during reticulocyte maturation: implication for the regulation of cell volume. Blood 114: 3928–3934.

63. Martin-JaularL, NakayasuES, FerrerM, AlmeidaIC, Del PortilloHA (2011) Exosomes from Plasmodium yoelii-infected reticulocytes protect mice from lethal infections. PLoS One 6: e26588.

64. PinoP, SebastianS, KimEA, BushE, BrochetM, et al. (2012) A tetracycline-repressible transactivator system to study essential genes in malaria parasites. Cell Host Microbe 12: 824–834.

65. NingJ, OttoTD, PfanderC, SchwachF, BrochetM, et al. (2013) Comparative genomics in Chlamydomonas and Plasmodium identifies an ancient nuclear envelope protein family essential for sexual reproduction in protists, fungi, plants, and vertebrates. Genes Dev 27: 1198–1215.

66. SaundersEC, NgWW, ChambersJM, NgM, NadererT, et al. (2011) Isotopomer profiling of Leishmania mexicana promastigotes reveals important roles for succinate fermentation and aspartate uptake in tricarboxylic acid cycle (TCA) anaplerosis, glutamate synthesis, and growth. J Biol Chem 286: 27706–27717.

67. CreekDJ, JankevicsA, BurgessKE, BreitlingR, BarrettMP (2012) IDEOM: an Excel interface for analysis of LC-MS-based metabolomics data. Bioinformatics 28: 1048–1049.

68. CreekDJ, JankevicsA, BreitlingR, WatsonDG, BarrettMP, et al. (2011) Toward global metabolomics analysis with hydrophilic interaction liquid chromatography-mass spectrometry: improved metabolite identification by retention time prediction. Anal Chem 83: 8703–8710.

69. ZamboniN, FendtSM, RuhlM, SauerU (2009) (13)C-based metabolic flux analysis. Nat Protoc 4: 878–892.

70. CreekDJ, ChokkathukalamA, JankevicsA, BurgessKE, BreitlingR, et al. (2012) Stable isotope-assisted metabolomics for network-wide metabolic pathway elucidation. Anal Chem 84: 8442–8447.

71. PinoP, FothBJ, KwokLY, SheinerL, SchepersR, et al. (2007) Dual targeting of antioxidant and metabolic enzymes to the mitochondrion and the apicoplast of Toxoplasma gondii. PLoS Pathog 3: e115.

72. EdgarRC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.

73. WaterhouseAM, ProcterJB, MartinDM, ClampM, BartonGJ (2009) Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189–1191.

74. WynnRM, KatoM, MachiusM, ChuangJL, LiJ, et al. (2004) Molecular mechanism for regulation of the human mitochondrial branched-chain alpha-ketoacid dehydrogenase complex by phosphorylation. Structure 12: 2185–2196.

75. MachiusM, WynnRM, ChuangJL, LiJ, KlugerR, et al. (2006) A versatile conformational switch regulates reactivity in human branched-chain alpha-ketoacid dehydrogenase. Structure 14: 287–298.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2014 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#