The Wide World of Ribosomally Encoded Bacterial Peptides
article has not abstract
Vyšlo v časopise:
The Wide World of Ribosomally Encoded Bacterial Peptides. PLoS Pathog 10(7): e32767. doi:10.1371/journal.ppat.1004221
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004221
Souhrn
article has not abstract
Zdroje
1. CotterPD, RossRP, HillC (2013) Bacteriocins - a viable alternative to antibiotics? Nat Rev Microbiol 11: 95–105.
2. BabaT, SchneewindO (1998) Instruments of microbial warfare: bacteriocin synthesis, toxicity and immunity. Trends Microbiol 6: 66–71.
3. SitCS, VederasJC (2008) Approaches to the discovery of new antibacterial agents based on bacteriocins. Biochem Cell Biol 86: 116–123.
4. GarridoMC, HerreroM, KolterR, MorenoF (1988) The export of the DNA replication inhibitor Microcin B17 provides immunity for the host cell. Embo J 7: 1853–1862.
5. ArnisonPG, BibbMJ, BierbaumG, BowersAA, BugniTS, et al. (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30: 108–160.
6. RogersLA (1928) The Inhibiting Effect of Streptococcus Lactis on Lactobacillus Bulgaricus. J Bacteriol 16: 321–325.
7. LubelskiJ, RinkR, KhusainovR, MollGN, KuipersOP (2008) Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci 65: 455–476.
8. BierbaumG, SahlHG (2009) Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol 10: 2–18.
9. PiperC, CotterPD, RossRP, HillC (2009) Discovery of medically significant lantibiotics. Curr Drug Discov Technol 6: 1–18.
10. WalshCT, NolanEM (2008) Morphing peptide backbones into heterocycles. Proc Natl Acad Sci U S A 105: 5655–5656.
11. YorgeyP, LeeJ, KordelJ, VivasE, WarnerP, et al. (1994) Posttranslational modifications in microcin B17 define an additional class of DNA gyrase inhibitor. Proc Natl Acad Sci U S A 91: 4519–4523.
12. MendozaF, MaquedaM, GalvezA, Martinez-BuenoM, ValdiviaE (1999) Antilisterial activity of peptide AS-48 and study of changes induced in the cell envelope properties of an AS-48-adapted strain of Listeria monocytogenes. Appl Environ Microbiol 65: 618–625.
13. SumitomoT, NakataM, HigashinoM, JinY, TeraoY, et al. (2011) Streptolysin S contributes to group A streptococcal translocation across an epithelial barrier. J Biol Chem 286: 2750–2761.
14. OfekI, Bergner-RabinowitzS, GinsburgI (1972) Oxygen-stable hemolysins of group A streptococci. 8. Leukotoxic and antiphagocytic effects of streptolysins S and O. Infect Immun 6: 459–464.
15. MiyazakiS, OhnoA, KobayashiI, UjiT, YamaguchiK, et al. (1993) Cytotoxic effect of hemolytic culture supernatant from Enterococcus faecalis on mouse polymorphonuclear neutrophils and macrophages. Microbiol Immunol 37: 265–270.
16. HungCH, TsaoN, ZengYF, LuSL, ChuanCN, et al. (2012) Synergistic effects of streptolysin S and streptococcal pyrogenic exotoxin B on the mouse model of group A streptococcal infection. Med Microbiol Immunol 201: 357–369.
17. van HemertS, MeijerinkM, MolenaarD, BronPA, de VosP, et al. (2010) Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells. BMC Microbiol 10: 293.
18. LyonGJ, NovickRP (2004) Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25: 1389–1403.
19. KongKF, VuongC, OttoM (2006) Staphylococcus quorum sensing in biofilm formation and infection. Int J Med Microbiol 296: 133–139.
20. CookLC, FederleMJ (2013) Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiol Rev 38: 473–492.
21. PetersenFC, FimlandG, ScheieAA (2006) Purification and functional studies of a potent modified quorum-sensing peptide and a two-peptide bacteriocin in Streptococcus mutans. Mol Microbiol 61: 1322–1334.
22. KleerebezemM (2004) Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25: 1405–1414.
23. ChallisGL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154: 1555–1569.
24. GrossH (2007) Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects. Appl Microbiol Biotechnol 75: 267–277.
25. BlinK, MedemaMH, KazempourD, FischbachMA, BreitlingR, et al. (2013) antiSMASH 2.0–a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41: W204–212.
26. LooseC, JensenK, RigoutsosI, StephanopoulosG (2006) A linguistic model for the rational design of antimicrobial peptides. Nature 443: 867–869.
27. GuptaS, KapoorP, ChaudharyK, GautamA, KumarR, et al. (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 8: e73957.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2014 Číslo 7
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Molecular and Cellular Mechanisms of KSHV Oncogenesis of Kaposi's Sarcoma Associated with HIV/AIDS
- Holobiont–Holobiont Interactions: Redefining Host–Parasite Interactions
- BCKDH: The Missing Link in Apicomplexan Mitochondrial Metabolism Is Required for Full Virulence of and
- Helminth Infections, Type-2 Immune Response, and Metabolic Syndrome