A Human Type 5 Adenovirus-Based Therapeutic Vaccine Re-programs Immune Response and Reverses Chronic Cardiomyopathy
The idea that Chagas disease (CD) has an important autoimmune involvement contributed to delay the development of therapies and vaccines. CD is a parasitic neglected disease which afflicts millions of people mostly in Latin America. The cardiac form is the main clinical manifestation of CD. Currently, patients with access to therapy receive medicaments that only mitigate symptoms. Because of the limited prospect of treatment, vaccine reemerged as a strategy to prevent infection, interfere with CD progression and, moreover, reverse heart abnormalities. Here we tested a recombinant adenovirus carrying sequences of ASP2 and TS T. cruzi antigens (rAdVax) as prophylactic and therapeutic tool using a model of chronic Chagas’ heart disease. We showed that prophylactic vaccination reduced heart parasite load, inflammation and electrical abnormalities. The rAdVax therapeutic vaccination also reduced heart injury and improved electrical function, preserved specific IFNγ-mediated immunity but reduced response to polyclonal stimuli, CD107a+ CD8+ T-cell frequency and plasma nitric oxide levels. Moreover, therapeutic rAdVax preserved the number IFNγ+ cells, but decreased perforin+ cells in the heart tissue. Therefore, our results support the hypothesis that vaccination can modify the immunological unbalance that concurs to Chagas’ heart disease to improve prognosis.
Vyšlo v časopise:
A Human Type 5 Adenovirus-Based Therapeutic Vaccine Re-programs Immune Response and Reverses Chronic Cardiomyopathy. PLoS Pathog 11(1): e32767. doi:10.1371/journal.ppat.1004594
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004594
Souhrn
The idea that Chagas disease (CD) has an important autoimmune involvement contributed to delay the development of therapies and vaccines. CD is a parasitic neglected disease which afflicts millions of people mostly in Latin America. The cardiac form is the main clinical manifestation of CD. Currently, patients with access to therapy receive medicaments that only mitigate symptoms. Because of the limited prospect of treatment, vaccine reemerged as a strategy to prevent infection, interfere with CD progression and, moreover, reverse heart abnormalities. Here we tested a recombinant adenovirus carrying sequences of ASP2 and TS T. cruzi antigens (rAdVax) as prophylactic and therapeutic tool using a model of chronic Chagas’ heart disease. We showed that prophylactic vaccination reduced heart parasite load, inflammation and electrical abnormalities. The rAdVax therapeutic vaccination also reduced heart injury and improved electrical function, preserved specific IFNγ-mediated immunity but reduced response to polyclonal stimuli, CD107a+ CD8+ T-cell frequency and plasma nitric oxide levels. Moreover, therapeutic rAdVax preserved the number IFNγ+ cells, but decreased perforin+ cells in the heart tissue. Therefore, our results support the hypothesis that vaccination can modify the immunological unbalance that concurs to Chagas’ heart disease to improve prognosis.
Zdroje
1. Rassi A Jr, Rassi A, Marin-Neto JA (2010). Chagas disease. Lancet. 375: 1388–1402. doi: 10.1016/S0140-6736(10)60061-X 20399979
2. Lannes-Vieira J, de Araújo-Jorge TC, Soeiro Mde N, Gadelha P, Corrêa-Oliveira R (2010). The centennial of the discovery of Chagas disease: facing the current challenges. PLoS Negl Trop Dis 4: e645. doi: 10.1371/journal.pntd.0000645 20614014
3. Junqueira C, Caetano B, Bartholomeu DC, Melo MB, Ropert C, et al. (2010). The endless race between Trypanosoma cruzi and host immunity: lessons for and beyond Chagas disease. Expert Rev Mol Med 12: e29. doi: 10.1017/S1462399410001560 20840799
4. Tarleton RL (2007). Immune system recognition of Trypanosoma cruzi. Curr Opin Immunol 19: 430–434. doi: 10.1016/j.coi.2007.06.003 17651955
5. Silverio JC, Pereira IR, Cipitelli M da C, Vinagre NF, Rodrigues MM, et al. (2012). CD8+ T-cells expressing interferon gamma or perforin play antagonistic roles in heart injury in experimental Trypanosoma cruzi-elicited cardiomyopathy. PLoS Pathog 8: e1002645. doi: 10.1371/journal.ppat.1002645 22532799
6. Parodi C, Padilla AM, Basombrío MA (2009). Protective immunity against Trypanosoma cruzi. Mem Inst Oswaldo Cruz 1: 288–294. doi: 10.1590/S0074-02762009000900038 19753487
7. Lee BY, Bacon KM, Wateska AR, Bottazzi ME, Dumonteil E, et al. (2012). Modeling the economic value of a Chagas’ disease therapeutic vaccine. Hum Vaccin Immunother 8: 1293–1301. doi: 10.4161/hv.20966 22894964
8. Paiva CN, Castelo-Branco MT, Rocha JA, Lannes-Vieira J, Gattass CR (1999). Trypanosoma cruzi: lack of T cell abnormalities in mice vaccinated with live trypomastigotes. Parasitol Res 85: 1012–1017. doi: 10.1007/s004360050674 10599925
9. Garg N, Tarleton RL (2002). Genetic immunization elicits antigen-specific protective immune responses and decreases disease severity in Trypanosoma cruzi infection. Infect Immun 70: 5547–5555. doi: 10.1128/IAI.70.10.5547-5555.2002 12228281
10. Cazorla SI, Frank FM, Malchiodi EL (2009). Vaccination approaches against Trypanosoma cruzi infection. Expert Rev Vaccines 8: 921–935. doi: 10.1586/erv.09.45 19538117
11. Nogueira RT, Nogueira AR, Pereira MC, Rodrigues MM, Galler R, et al. (2011). Biological and immunological characterization of recombinant Yellow Fever 17D viruses expressing a Trypanosoma cruzi Amastigote Surface Protein-2 CD8+ T cell epitope at two distinct regions of the genome. Virol J 8: 127. doi: 10.1186/1743-422X-8-127 21418577
12. Gupta S, Garg NJ (2013). TcVac3 induced control of Trypanosoma cruzi infection and chronic myocarditis in mice. PLoS One 8: 59434. doi: 10.1371/journal.pone.0059434 23555672
13. Low HP, Santos MA, Wizel B, Tarleton RL (1998). Amastigote surface proteins of Trypanosoma cruzi are targets for CD8+ CTL. J Immunol 160: 1817–1823. 9469442
14. Schenkman S, Eichinger D, Pereira ME, Nussenzweig V (1994). Structural and functional properties of Trypanosoma trans-sialidase. Annu Rev Microbiol 48: 499–523. doi: 10.1146/annurev.mi.48.100194.002435 7826016
15. Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, et al. (2012). The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 12: 240–253. doi: 10.1016/j.meegid.2011.12.009 22226704
16. Machado AV, Cardoso JE, Claser C, Rodrigues MM, Gazzinelli RT, et al. (2006). Long-term protective immunity induced against Trypanosoma cruzi infection after vaccination with recombinant adenoviruses encoding amastigote surface protein-2 and trans-sialidase. Hum Gene Ther 17: 898–908. doi: 10.1089/hum.2006.17.898 16972758
17. Haolla FA, Claser C, de Alencar BC, Tzelepis F, de Vasconcelos JR, et al. (2009). Strain-specific protective immunity following vaccination against experimental Trypanosoma cruzi infection. Vaccine 27: 5644–5653. doi: 10.1016/j.vaccine.2009.07.013 19635607
18. Pereira IR, Vilar-Pereira G, da Silva AA, Lannes-Vieira J (2014). Severity of chronic experimental Chagas’ heart disease parallels tumour necrosis factor and nitric oxide levels in the serum: models of mild and severe disease. Mem Inst Oswaldo Cruz 109: 289–298. 24937048
19. Pereira IR, Vilar-Pereira G, da Silva AA, Moreira OC, Britto C, et al. (2014). Tumor necrosis factor is a therapeutic target for immunological unbalance and cardiac abnormalities in chronic experimental Chagas’ heart disease. Mediators Inflamm 2014: 798078. doi: 10.1155/2014/798078 25140115
20. Medeiros GA, Silvério JC, Marino AP, Roffê E, Vieira V, et al. (2009). Treatment of chronically Trypanosoma cruzi-infected mice with a CCR1/CCR5 antagonist (Met-RANTES) results in amelioration of cardiac tissue damage. Microbes Infect 11: 264–273. doi: 10.1016/j.micinf.2008.11.012 19100857
21. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature 410: 701–705. doi: 10.1038/35070587 11287958
22. Grisotto MG, D’Império Lima MR, Marinho CR, Tadokoro CE, Abrahamsohn IA, et al. (2001). Most parasite-specific CD8+ cells in Trypanosoma cruzi-infected chronic mice are down-regulated for T-cell receptor-alpha beta and CD8 molecules. Immunol 102: 209–217. doi: 10.1046/j.1365-2567.2001.01170.x 11260326
23. Aktas E, Kucuksezer UC, Bilgic S, Erten G, Deniz G (2009). Relationship between CD107a expression and cytotoxic activity. Cell Immunol 254: 149–154. doi: 10.1016/j.cellimm.2008.08.007 18835598
24. Carvalho CM, Silverio JC, da Silva AA, Pereira IR, Coelho JM, et al. (2012). Inducible nitric oxide synthase in heart tissue and nitric oxide in serum of Trypanosoma cruzi-infected rhesus monkeys: association with heart injury. PLoS Negl Trop Dis 6: e1644. doi: 10.1371/journal.pntd.0001644 22590660
25. Rigato PO, de Alencar BC, de Vasconcelos JR, Dominguez MR, Araújo AF, et al. (2011). Heterologous plasmid DNA prime-recombinant human adenovirus 5 boost vaccination generates a stable pool of protective long-lived CD8(+) T effector memory cells specific for a human parasite Trypanosoma cruzi. Infect Immun 79: 2120–2130. doi: 10.1128/IAI.01190-10 21357719
26. Tzelepis F, de Alencar BC, Penido ML, Gazzinelli RT, Persechini PM, et al. (2006). Distinct kinetics of effector CD8+ cytotoxic T cells after infection with Trypanosoma cruzi in naive or vaccinated mice. Infect Immun 74: 2477–2481. doi: 10.1128/IAI.74.4.2477-2481.2006 16552083
27. de Alencar BC, Persechini PM, Haolla FA, de Oliveira G, Silverio JC, et al. (2009). Perforin and gamma interferon expression are required for CD4+ and CD8+ T-cell-dependent protective immunity against a human parasite, Trypanosoma cruzi, elicited by heterologous plasmid DNA prime-recombinant adenovirus 5 boost vaccination. Infect Immun 77: 4383–4395. doi: 10.1128/IAI.01459-08 19651871
28. Barbosa RP, Filho BG, Dos Santos LI, Junior PA, Marques PE, et al. (2013). Vaccination using recombinants influenza and adenoviruses encoding amastigote surface protein-2 are highly effective on protection against Trypanosoma cruzi infection. PLoS One 8: e61795. doi: 10.1371/journal.pone.0061795 23637908
29. Adams JE, Abendschein DR, Jaffe AS (1993). Biochemical markers of myocardial injury. Is MB creatine kinase the choice for the 1990s? Circulation 88: 750–763. doi: 10.1161/01.CIR.88.2.750 8339435
30. Higuchi ML, De Morais CF, Pereira Barreto AC, Lopes EA, Stolf N, et al. (1987). The role of active myocarditis in the development of heart failure in Chagas’ disease: a study based on endomyocardial biopsies. Clin Cardiol 10: 665–670. doi: 10.1002/clc.4960101113 3677499
31. Strauss DG, Cardoso S, Lima JA, Rochitte CE, Wu KC (2011). ECG scar quantification correlates with cardiac magnetic resonance scar size and prognostic factors in Chagas’ disease. Heart 97: 357–361. doi: 10.1136/hrt.2010.210047 21245474
32. Andrade SG, Stocker-Guerret S, Pimentel AS, Grimaud JA (1991). Reversibility of cardiac fibrosis in mice chronically infected with Trypanosoma cruzi under specific chemotherapy. Mem Inst Oswaldo Cruz 86: 187–200. doi: 10.1590/S0074-02761991000200008 1842413
33. Waghabi MC, Coutinho-Silva R, Feige JJ, Higuchi Mde L, Becker D, et al. (2009). Gap junction reduction in cardiomyocytes following transforming growth factor-beta treatment and Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 104: 1083–1090. doi: 10.1590/S0074-02762009000800004 20140368
34. Higuchi MD, Ries MM, Aiello VD, Benvenuti LA, Gutierrez PS, et al. (1997). Association of an increase in CD8+ T cells with the presence of Trypanosoma cruzi antigens in chronic, human, chagasic myocarditis. Am J Trop Med Hyg 56: 485–489. 9180594
35. Soares MB, Silva-Mota KN, Lima RS, Bellintani MC, Pontes-de-Carvalho L, et al. (2001). Modulation of chagasic cardiomyopathy by interleukin-4: dissociation between inflammation and tissue parasitism. Am J Pathol 159: 703–709. doi: 10.1016/S0002-9440(10)61741-5 11485928
36. Pinto AM, Sales PC, Camargos ER, Silva AM. (2011). Tumour necrosis factor (TNF)-mediated NF-κB activation facilitates cellular invasion of non-professional phagocytic epithelial cell lines by Trypanosoma cruzi. Cell Microbiol 13: 1518–1529. doi: 10.1111/j.1462-5822.2011.01636.x 21749603
37. Tarleton RL, Zhang L, Downs MO (1997). “Autoimmune rejection” of neonatal heart transplants in experimental Chagas disease is a parasite-specific response to infected host tissue. Proc Natl Acad Sci U S A 94: 3932–3937. doi: 10.1073/pnas.94.8.3932 9108082
38. Rodrigues MM, Boscardin SB, Vasconcelos JR, Hiyane MI, Salay G, et al. (2003). Importance of CD8 T cell-mediated immune response during intracellular parasitic infections and its implications for the development of effective vaccines. An Acad Bras Cienc 75: 443–468. doi: 10.1590/S0001-37652003000400005 14605680
39. Miyahira Y (2008). Trypanosoma cruzi infection from the view of CD8+ T cell immunity–an infection model for developing T cell vaccine. Parasitol Int 57: 38–48. doi: 10.1016/j.parint.2007.07.005 17728174
40. Vasconcelos JR, Bruna-Romero O, Araujo AF, Dominguez MR, Ersching J, et al. (2012). Pathogen-induced proapoptotic phenotype and high CD95 (Fas) expression accompany a suboptimal CD8+ T-cell response: reversal by adenoviral vaccine. PLoS Pathog 8: e1002699. doi: 10.1371/journal.ppat.1002699 22615561
41. Lannes-Vieira J (2003). Trypanosoma cruzi-elicited CD8+ T cell-mediated myocarditis: chemokine receptors and adhesion molecules as potential therapeutic targets to control chronic inflammation? Mem Inst Oswaldo Cruz 98: 299–304. doi: 10.1590/S0074-02762003000300002 12886406
42. Lannes-Vieira J, Pereira IR, Vinagre NF, Arnez LE (2011). TNF-α and TNFR in Chagas disease: from protective immunity to pathogenesis of chronic cardiomyopathy. Adv Exp Med Biol 691: 221–230. 21153326
43. Pérez-Fuentes R, Guégan JF, Barnabé C, López-Colombo A, Salgado-Rosas H, et al. (2003). Severity of chronic Chagas disease is associated with cytokine/antioxidant imbalance in chronically infected individuals. Int J Parasitol 33: 293–299. doi: 10.1016/S0020-7519(02)00283-7 12670514
44. Silva JS, Machado FS, Martins GA (2003). The role of nitric oxide in the pathogenesis of Chagas disease. Front Biosci 8: 314–325. doi: 10.2741/1012 12877141
45. Brunet LR (2001). Nitric oxide in parasitic infections. Int Immunopharmacol 1: 1457–1467. doi: 10.1016/S1567-5769(01)00090-X 11515811
46. Quijano-Hernandez I, Dumonteil E (2011). Advances and challenges towards a vaccine against Chagas disease. Hum Vaccin 7: 1184–1191. doi: 10.4161/hv.7.11.17016 22048121
47. Hammer SM, Sobieszczyk ME, Janes H, Karuna ST, Mulligan MJ, et al. (2013). Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N Engl J Med 369: 2083–2092. doi: 10.1056/NEJMoa1310566 24099601
48. Tamminga C, Sedegah M, Regis D, Chuang I, Epstein JE, et al. (2011). Adenovirus-5-vectored P. falciparum vaccine expressing CSP and AMA1. Part B: safety, immunogenicity and protective efficacy of the CSP component. PLoS One 6: e25868. doi: 10.1371/journal.pone.0025868 22003411
49. Smaill F, Jeyanathan M, Smieja M, Medina MF, Thanthrige-Don N, et al. (2013). A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci Transl Med 5: 205ra134. doi: 10.1126/scitranslmed.3006843 24089406
50. Nam JH (2009). Rapamycin: could it enhance vaccine efficacy? Expert Rev Vaccines 8: 1535–1539. doi: 10.1586/erv.09.115 19863245
51. Boscardin SB, Kinoshita SS, Fujimura AE, Rodrigues MM (2003). Immunization with cDNA expressed by amastigotes of Trypanosoma cruzi elicits protective immune response against experimental infection. Infect Immun 71: 2744–2757. doi: 10.1128/IAI.71.5.2744-2757.2003 12704149
52. Vilar-Pereira G, Silva AA, Pereira IR, Silva RR, Moreira OC, et al. (2012). Trypanosoma cruzi-induced depressive-like behavior is independent of meningoencephalitis but responsive to parasiticide and TNF-targeted therapeutic interventions. Brain Behav Immun 26: 1136–1149. doi: 10.1016/j.bbi.2012.07.009 22841695
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 1
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
Najčítanejšie v tomto čísle
- Infections in Humans and Animals: Pathophysiology, Detection, and Treatment
- : Trypanosomatids Adapted to Plant Environments
- Environmental Drivers of the Spatiotemporal Dynamics of Respiratory Syncytial Virus in the United States
- Dengue Virus RNA Structure Specialization Facilitates Host Adaptation