TLR3 Signaling in Macrophages Is Indispensable for the Protective Immunity of Invariant Natural Killer T Cells against Enterovirus 71 Infection
Enterovirus 71 (EV71) is a major causative pathogen of hand, foot and mouth disease. EV71 infection occurs mainly in children but rarely in adults. The factors that determine the susceptibility of children to EV71 infection remain elusive. Here, we found that the paucity of invariant natural killer T (iNKT) cells in new-born mice was associated with their susceptibility to EV71 infection. Furthermore, iNKT cells played a critical role in protecting older young mice from EV71 infection before their adaptive immune systems were fully developed. Mechanistically, TLR3 signaling in macrophages, but not in dendritic cells, was essentially required for iNKT cell activation during EV71 infection. Both interleukin (IL)-12 production and endogenous lipid antigens presented by macrophages were required for full iNKT cell activation. iNKT cells tended to prevent the dissemination of EV71 into central nervous system. Taken together, our findings provide a new insight into the susceptibility of children to EV71 infection, and imply that the manipulation of iNKT cells might represent a potential therapeutic strategy for HFMD and other viral infectious diseases in children.
Vyšlo v časopise:
TLR3 Signaling in Macrophages Is Indispensable for the Protective Immunity of Invariant Natural Killer T Cells against Enterovirus 71 Infection. PLoS Pathog 11(1): e32767. doi:10.1371/journal.ppat.1004613
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004613
Souhrn
Enterovirus 71 (EV71) is a major causative pathogen of hand, foot and mouth disease. EV71 infection occurs mainly in children but rarely in adults. The factors that determine the susceptibility of children to EV71 infection remain elusive. Here, we found that the paucity of invariant natural killer T (iNKT) cells in new-born mice was associated with their susceptibility to EV71 infection. Furthermore, iNKT cells played a critical role in protecting older young mice from EV71 infection before their adaptive immune systems were fully developed. Mechanistically, TLR3 signaling in macrophages, but not in dendritic cells, was essentially required for iNKT cell activation during EV71 infection. Both interleukin (IL)-12 production and endogenous lipid antigens presented by macrophages were required for full iNKT cell activation. iNKT cells tended to prevent the dissemination of EV71 into central nervous system. Taken together, our findings provide a new insight into the susceptibility of children to EV71 infection, and imply that the manipulation of iNKT cells might represent a potential therapeutic strategy for HFMD and other viral infectious diseases in children.
Zdroje
1. Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, et al. (2010) Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 10: 778–790. doi: 10.1016/S1473-3099(10)70194-8 20961813
2. Deng C, Yang C, Wan J, Zhu L, Leng Q (2011) Irregular poliovirus vaccination correlates to pulmonary edema of hand, foot, and mouth disease. Clin Vaccine Immunol 18: 1589–1590. doi: 10.1128/CVI.05132-11 21752953
3. Tan X, Huang X, Zhu S, Chen H, Yu Q, et al. (2011) The persistent circulation of enterovirus 71 in People's Republic of China: causing emerging nationwide epidemics since 2008. PLoS One 6: e25662. doi: 10.1371/journal.pone.0025662 21980521
4. Huang CC, Liu CC, Chang YC, Chen CY, Wang ST, et al. (1999) Neurologic complications in children with enterovirus 71 infection. N Engl J Med 341: 936–942. 10498488
5. Ho M, Chen ER, Hsu KH, Twu SJ, Chen KT, et al. (1999) An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med 341: 929–935. 10498487
6. Chan LG, Parashar UD, Lye MS, Ong FG, Zaki SR, et al. (2000) Deaths of children during an outbreak of hand, foot, and mouth disease in sarawak, malaysia: clinical and pathological characteristics of the disease. For the Outbreak Study Group. Clin Infect Dis 31: 678–683. 11017815
7. Seiff A (2012) Cambodia unravels cause of mystery illness. Lancet 380: 206. 22826835
8. Khong WX, Yan B, Yeo H, Tan EL, Lee JJ, et al. (2011) A non mouse-adapted Enterovirus 71 (EV71) strain exhibits neurotropism causing neurological manifestations in a novel mouse model of EV71 infection. J Virol.
9. Lei X, Liu X, Ma Y, Sun Z, Yang Y, et al. (2010) The 3C protein of enterovirus 71 inhibits retinoid acid-inducible gene I-mediated interferon regulatory factor 3 activation and type I interferon responses. J Virol 84: 8051–8061. doi: 10.1128/JVI.02491-09 20519382
10. Lei X, Sun Z, Liu X, Jin Q, He B, et al. (2011) Cleavage of the adaptor protein TRIF by enterovirus 71 3C inhibits antiviral responses mediated by Toll-like receptor 3. J Virol 85: 8811–8818. doi: 10.1128/JVI.00447-11 21697485
11. Wang B, Xi X, Lei X, Zhang X, Cui S, et al. (2013) Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog 9: e1003231. doi: 10.1371/journal.ppat.1003231 23555247
12. Liao CC, Liou AT, Chang YS, Wu SY, Chang CS, et al. (2014) Immunodeficient Mouse Models with Different Disease Profiles by in vivo Infection with the Same Clinical Isolate of Enterovirus 71. J Virol.
13. Wang SM, Lei HY, Huang KJ, Wu JM, Wang JR, et al. (2003) Pathogenesis of enterovirus 71 brainstem encephalitis in pediatric patients: roles of cytokines and cellular immune activation in patients with pulmonary edema. J Infect Dis 188: 564–570. 12898444
14. Tomura M, Yu WG, Ahn HJ, Yamashita M, Yang YF, et al. (1999) A novel function of Valpha14+CD4+NKT cells: stimulation of IL-12 production by antigen-presenting cells in the innate immune system. J Immunol 163: 93–101. 10384104
15. Stetson DB, Mohrs M, Reinhardt RL, Baron JL, Wang ZE, et al. (2003) Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med 198: 1069–1076. 14530376
16. Kronenberg M, Gapin L (2002) The unconventional lifestyle of NKT cells. Nat Rev Immunol 2: 557–568. 12154375
17. Diana J, Lehuen A (2009) NKT cells: friend or foe during viral infections? Eur J Immunol 39: 3283–3291. doi: 10.1002/eji.200939800 19830742
18. Juno JA, Keynan Y, Fowke KR (2012) Invariant NKT cells: regulation and function during viral infection. PLoS Pathog 8: e1002838. doi: 10.1371/journal.ppat.1002838 22916008
19. Brigl M, Tatituri RV, Watts GF, Bhowruth V, Leadbetter EA, et al. (2011) Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J Exp Med.
20. Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4: 1230–1237. 14578883
21. Mattner J, Debord KL, Ismail N, Goff RD, Cantu C 3rd, et al. (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434: 525–529. 15791258
22. Skold M, Behar SM (2005) The role of group 1 and group 2 CD1-restricted T cells in microbial immunity. Microbes Infect 7: 544–551. 15777730
23. Salio M, Speak AO, Shepherd D, Polzella P, Illarionov PA, et al. (2007) Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc Natl Acad Sci U S A 104: 20490–20495. 18077358
24. Paget C, Mallevaey T, Speak AO, Torres D, Fontaine J, et al. (2007) Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 27: 597–609. 17950005
25. Brennan PJ, Tatituri RV, Brigl M, Kim EY, Tuli A, et al. (2011) Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nat Immunol 12: 1202–1211. doi: 10.1038/ni.2143 22037601
26. Paget C, Bialecki E, Fontaine J, Vendeville C, Mallevaey T, et al. (2009) Role of invariant NK T lymphocytes in immune responses to CpG oligodeoxynucleotides. J Immunol 182: 1846–1853. doi: 10.4049/jimmunol.0802492 19201836
27. Tyznik AJ, Tupin E, Nagarajan NA, Her MJ, Benedict CA, et al. (2008) Cutting edge: the mechanism of invariant NKT cell responses to viral danger signals. J Immunol 181: 4452–4456. 18802047
28. Wesley JD, Tessmer MS, Chaukos D, Brossay L (2008) NK cell-like behavior of Valpha14i NK T cells during MCMV infection. PLoS Pathog 4: e1000106. doi: 10.1371/journal.ppat.1000106 18636102
29. Berzins SP, Cochrane AD, Pellicci DG, Smyth MJ, Godfrey DI (2005) Limited correlation between human thymus and blood NKT cell content revealed by an ontogeny study of paired tissue samples. Eur J Immunol 35: 1399–1407. 15816002
30. Barral P, Polzella P, Bruckbauer A, van Rooijen N, Besra GS, et al. (2010) CD169(+) macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nat Immunol 11: 303–312. doi: 10.1038/ni.1853 20228797
31. Holzapfel KL, Tyznik AJ, Kronenberg M, Hogquist KA (2014) Antigen-dependent versus-independent activation of invariant NKT cells during infection. J Immunol 192: 5490–5498. doi: 10.4049/jimmunol.1400722 24813205
32. Andersson U, Butters TD, Dwek RA, Platt FM (2000) N-butyldeoxygalactonojirimycin: a more selective inhibitor of glycosphingolipid biosynthesis than N-butyldeoxynojirimycin, in vitro and in vivo. Biochem Pharmacol 59: 821–829. 10718340
33. Nagarajan NA, Kronenberg M (2007) Invariant NKT cells amplify the innate immune response to lipopolysaccharide. J Immunol 178: 2706–2713. 17312112
34. Wang YF, Chou CT, Lei HY, Liu CC, Wang SM, et al. (2004) A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. J Virol 78: 7916–7924. 15254164
35. Miyamura K, Nishimura Y, Abo M, Wakita T, Shimizu H (2011) Adaptive mutations in the genomes of enterovirus 71 strains following infection of mouse cells expressing human P-selectin glycoprotein ligand-1. J Gen Virol 92: 287–291. doi: 10.1099/vir.0.022418-0 20943886
36. Hammond K, Cain W, van Driel I, Godfrey D (1998) Three day neonatal thymectomy selectively depletes NK1.1+ T cells. Int Immunol 10: 1491–1499. 9796916
37. Adkins B, Leclerc C, Marshall-Clarke S (2004) Neonatal adaptive immunity comes of age. Nat Rev Immunol 4: 553–564. 15229474
38. Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2: 151–161. 11913066
39. Zeissig S, Kaser A, Dougan SK, Nieuwenhuis EE, Blumberg RS (2007) Role of NKT cells in the digestive system. III. Role of NKT cells in intestinal immunity. Am J Physiol Gastrointest Liver Physiol 293: G1101–1105. 17717040
40. Smith HR, Heusel JW, Mehta IK, Kim S, Dorner BG, et al. (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci U S A 99: 8826–8831. 12060703
41. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296: 1323–1326. 11950999
42. Firth MA, Madera S, Beaulieu AM, Gasteiger G, Castillo EF, et al. (2013) Nfil3-independent lineage maintenance and antiviral response of natural killer cells. J Exp Med 210: 2981–2990. doi: 10.1084/jem.20130417 24277151
43. Fairchok MP, Martin ET, Chambers S, Kuypers J, Behrens M, et al. (2010) Epidemiology of viral respiratory tract infections in a prospective cohort of infants and toddlers attending daycare. J Clin Virol 49: 16–20. doi: 10.1016/j.jcv.2010.06.013 20650679
44. Venter M, Lassauniere R, Kresfelder TL, Westerberg Y, Visser A (2011) Contribution of common and recently described respiratory viruses to annual hospitalizations in children in South Africa. J Med Virol 83: 1458–1468. doi: 10.1002/jmv.22120 21678450
45. Nair H, Brooks WA, Katz M, Roca A, Berkley JA, et al. (2011) Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis. Lancet 378: 1917–1930. doi: 10.1016/S0140-6736(11)61051-9 22078723
46. Cui J, Shin T, Kawano T, Sato H, Kondo E, et al. (1997) Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 278: 1623–1626. 9374462
47. Griewank K, Borowski C, Rietdijk S, Wang N, Julien A, et al. (2007) Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity 27: 751–762. 18031695
48. Yang C, Deng C, Wan J, Zhu L, Leng Q (2011) Neutralizing antibody response in the patients with hand, foot and mouth disease to enterovirus 71 and its clinical implications. Virol J 8: 306. doi: 10.1186/1743-422X-8-306 21679417
49. Ong KC, Badmanathan M, Devi S, Leong KL, Cardosa MJ, et al. (2008) Pathologic characterization of a murine model of human enterovirus 71 encephalomyelitis. J Neuropathol Exp Neurol 67: 532–542. doi: 10.1097/NEN.0b013e31817713e7 18520772
50. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, et al. (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176: 1693–1702. 1460426
51. Zhu QY, Liu Q, Chen JX, Lan K, Ge BX (2010) MicroRNA-101 targets MAPK phosphatase-1 to regulate the activation of MAPKs in macrophages. J Immunol 185: 7435–7442. doi: 10.4049/jimmunol.1000798 21068409
52. Pei B, Speak AO, Shepherd D, Butters T, Cerundolo V, et al. (2011) Diverse endogenous antigens for mouse NKT cells: self-antigens that are not glycosphingolipids. J Immunol 186: 1348–1360. doi: 10.4049/jimmunol.1001008 21191069
53. Xu W, Liu CF, Yan L, Li JJ, Wang LJ, et al. (2012) Distribution of enteroviruses in hospitalized children with hand, foot and mouth disease and relationship between pathogens and nervous system complications. Virol J 9: 8. doi: 10.1186/1743-422X-9-8 22230340
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 1
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Infections in Humans and Animals: Pathophysiology, Detection, and Treatment
- The Phylogenetically-Related Pattern Recognition Receptors EFR and XA21 Recruit Similar Immune Signaling Components in Monocots and Dicots
- Specificity and Dynamics of Effector and Memory CD8 T Cell Responses in Human Tick-Borne Encephalitis Virus Infection
- Viral Activation of MK2-hsp27-p115RhoGEF-RhoA Signaling Axis Causes Cytoskeletal Rearrangements, P-body Disruption and ARE-mRNA Stabilization