The Shear Stress of Host Cell Invasion: Exploring the Role of Biomolecular Complexes
article has not abstract
Vyšlo v časopise:
The Shear Stress of Host Cell Invasion: Exploring the Role of Biomolecular Complexes. PLoS Pathog 11(1): e32767. doi:10.1371/journal.ppat.1004539
Kategorie:
Pearls
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004539
Souhrn
article has not abstract
Zdroje
1. Hansson GC (2012) Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol 15: 57–62. doi: 10.1016/j.mib.2011.11.002
2. Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75: 519–560. 7624393
3. Moriarty TJ, Shi M, Lin YP, Ebady R, Zhou H, et al. (2012) Vascular binding of a pathogen under shear force through mechanistically distinct sequential interactions with host macromolecules. Mol Microbiol 86: 1116–1131. doi: 10.1111/mmi.12045 23095033
4. Carruthers V, Boothroyd JC (2007) Pulling together: an integrated model of Toxoplasma cell invasion. Current Opinion in Microbiology 10: 83–89. doi: 10.1016/j.mib.2006.06.017 16837236
5. Nauman EA, Ott CM, Sander E, Tucker DL, Pierson D, et al. (2007) Novel quantitative biosystem for modeling physiological fluid shear stress on cells. Appl Environ Microbiol 73: 699–705. doi: 10.1128/AEM.02428-06 17142365
6. Harvey KL, Gilson PR, Crabb BS (2012) A model for the progression of receptor-ligand interactions during erythrocyte invasion by Plasmodium falciparum. Int J Parasitol 42: 567–573. doi: 10.1016/j.ijpara.2012.02.011 22710063
7. Harker KS, Jivan E, McWhorter FY, Liu WF, Lodoen MB (2014) Shear forces enhance Toxoplasma gondii tachyzoite motility on vascular endothelium. MBio 5: e01111–01113. doi: 10.1128/mBio.01111-13 24692639
8. Dasgupta S, Auth T, Gov NS, Satchwell TJ, Hanssen E, et al. (2014) Membrane-wrapping contributions to malaria parasite invasion of the human erythrocyte. Biophys J 107: 43–54. doi: 10.1016/j.bpj.2014.05.024 24988340
9. Crick AJ, Theron M, Tiffert T, Lew VL, Cicuta P, et al. (2014) Quantitation of malaria parasite-erythrocyte cell-cell interactions using optical tweezers. Biophys J 107: 846–853. doi: 10.1016/j.bpj.2014.07.010 25140419
10. Dobrowolski JM, Sibley LD (1996) Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84: 933–939. doi: 10.1016/S0092-8674(00)81071-5 8601316
11. Besteiro S, Michelin A, Poncet J, Dubremetz JF, Lebrun M (2009) Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog 5: e1000309. doi: 10.1371/journal.ppat.1000309 19247437
12. Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, et al. (2011) Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci U S A 108: 13275–13280. doi: 10.1073/pnas.1110303108 21788485
13. Lamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B, et al. (2011) The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. PLoS Pathog 7: e1001276. doi: 10.1371/journal.ppat.1001276 21347343
14. Tyler JS, Boothroyd JC (2011) The C-terminus of Toxoplasma RON2 provides the crucial link between AMA1 and the host-associated invasion complex. PLoS Pathog 7: e1001282. doi: 10.1371/journal.ppat.1001282 21347354
15. Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey EA, et al. (1997) Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91: 511–520. doi: 10.1016/S0092-8674(00)80437-7 9390560
16. Lamarque MH, Roques M, Kong-Hap M, Tonkin ML, Rugarabamu G, et al. (2014) Plasticity and redundancy among AMA-RON pairs ensure host cell entry of Toxoplasma parasites. Nat Commun 5: 4098. doi: 10.1038/ncomms5098 24934579
17. Harvey KL, Yap A, Gilson PR, Cowman AF, Crabb BS (2014) Insights and controversies into the role of the key Apicomplexan invasion ligand, Apical Membrane Antigen 1. Int J Parasitol. doi: 10.1016/j.ijpara.2014.08.001 25157917
18. Srinivasan P, Ekanem E, Diouf A, Tonkin ML, Miura K, et al. (2014) Immunization with a functional protein complex required for erythrocyte invasion protects against lethal malaria. Proc Natl Acad Sci U S A 111: 10311–10316. doi: 10.1073/pnas.1409928111 24958881
19. Dubremetz JF (1998) Host cell invasion by Toxoplasma gondii. Trends Microbiol 6: 27–30. doi: 10.1016/S0966-842X(97)01165-7 9481821
20. Tonkin ML, Roques M, Lamarque MH, Pugniere M, Douguet D, et al. (2011) Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. Science 333: 463–467. doi: 10.1126/science.1204988 21778402
21. Vulliez-Le Normand B, Tonkin ML, Lamarque MH, Langer S, Hoos S, et al. (2012) Structural and functional insights into the malaria parasite moving junction complex. PLoS Pathog 8: e1002755. doi: 10.1371/journal.ppat.1002755 22737069
22. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372: 774–797. doi: 10.1016/j.jmb.2007.05.022 17681537
23. Leykauf K, Treeck M, Gilson PR, Nebl T, Braulke T, et al. (2010) Protein kinase a dependent phosphorylation of apical membrane antigen 1 plays an important role in erythrocyte invasion by the malaria parasite. PLoS Pathog 6: e1000941. doi: 10.1371/journal.ppat.1000941 20532217
24. Ge X, MacRaild CA, Devine SM, Debono CO, Wang G, et al. (2014) Ligand-Induced Conformational Change of Plasmodium falciparum AMA1 Detected Using (19)F NMR. J Med Chem 57: 6419–6427. doi: 10.1021/jm500390g 25068708
25. Poukchanski A, Fritz HM, Tonkin ML, Treeck M, Boulanger MJ, et al. (2013) Toxoplasma gondii Sporozoites Invade Host Cells Using Two Novel Paralogues of RON2 and AMA1. PLoS One 8: e70637. doi: 10.1371/journal.pone.0070637 23940612
26. Hamon M, Bierne H, Cossart P (2006) Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol 4: 423–434. doi: 10.1038/nrmicro1413 16710323
27. Schubert WD, Urbanke C, Ziehm T, Beier V, Machner MP, et al. (2002) Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 111: 825–836. doi: 10.1016/S0092-8674(02)01136-4 12526809
28. Niemann HH, Jager V, Butler PJ, van den Heuvel J, Schmidt S, et al. (2007) Structure of the human receptor tyrosine kinase met in complex with the Listeria invasion protein InlB. Cell 130: 235–246. doi: 10.1016/j.cell.2007.05.037 17662939
29. Machner MP, Frese S, Schubert WD, Orian-Rousseau V, Gherardi E, et al. (2003) Aromatic amino acids at the surface of InlB are essential for host cell invasion by Listeria monocytogenes. Mol Microbiol 48: 1525–1536. doi: 10.1046/j.1365-2958.2003.03532.x 12791136
30. Zhang N, Yan J, Lu G, Guo Z, Fan Z, et al. (2011) Binding of herpes simplex virus glycoprotein D to nectin-1 exploits host cell adhesion. Nat Commun 2: 577. doi: 10.1038/ncomms1571 22146396
31. Handler CG, Eisenberg RJ, Cohen GH (1996) Oligomeric structure of glycoproteins in herpes simplex virus type 1. J Virol 70: 6067–6070. 8709230
32. Di Giovine P, Settembre EC, Bhargava AK, Luftig MA, Lou H, et al. (2011) Structure of herpes simplex virus glycoprotein D bound to the human receptor nectin-1. PLoS Pathog 7: e1002277. doi: 10.1371/journal.ppat.1002277 21980294
33. Carfi A, Willis SH, Whitbeck JC, Krummenacher C, Cohen GH, et al. (2001) Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol Cell 8: 169–179. doi: 10.1016/S1097-2765(01)00298-2 11511370
34. Krummenacher C, Supekar VM, Whitbeck JC, Lazear E, Connolly SA, et al. (2005) Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry. EMBO J 24: 4144–4153. doi: 10.1038/sj.emboj.7600875 16292345
35. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, et al. (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393: 648–659. doi: 10.1038/31405 9641677
36. Myszka DG, Sweet RW, Hensley P, Brigham-Burke M, Kwong PD, et al. (2000) Energetics of the HIV gp120-CD4 binding reaction. Proc Natl Acad Sci U S A 97: 9026–9031. doi: 10.1073/pnas.97.16.9026 10922058
37. Abbas W, Herbein G (2014) Plasma membrane signaling in HIV-1 infection. Biochim Biophys Acta 1838: 1132–1142. doi: 10.1016/j.bbamem.2013.06.020 23806647
38. Srinivasan P, Yasgar A, Luci DK, Beatty WL, Hu X, et al. (2013) Disrupting malaria parasite AMA1-RON2 interaction with a small molecule prevents erythrocyte invasion. Nat Commun 4: 2261. doi: 10.1038/ncomms3261 23907321
39. Vermeire K, Schols D (2005) Anti-HIV agents targeting the interaction of gp120 with the cellular CD4 receptor. Expert Opin Investig Drugs 14: 1199–1212. doi: 10.1517/13543784.14.10.1199 16185162
40. Boothroyd JC, Dubremetz JF (2008) Kiss and spit: the dual roles of Toxoplasma rhoptries. Nat Rev Microbiol 6: 79–88. doi: 10.1038/nrmicro1800 18059289
41. Tilney LG, Portnoy DA (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109: 1597–1608. doi: 10.1083/jcb.109.4.1597 2507553
42. Earl LA, Lifson JD, Subramaniam S (2013) Catching HIV ‘in the act’ with 3D electron microscopy. Trends Microbiol 21: 397–404. doi: 10.1016/j.tim.2013.06.004 23850373
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 1
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Infections in Humans and Animals: Pathophysiology, Detection, and Treatment
- The Phylogenetically-Related Pattern Recognition Receptors EFR and XA21 Recruit Similar Immune Signaling Components in Monocots and Dicots
- Specificity and Dynamics of Effector and Memory CD8 T Cell Responses in Human Tick-Borne Encephalitis Virus Infection
- Viral Activation of MK2-hsp27-p115RhoGEF-RhoA Signaling Axis Causes Cytoskeletal Rearrangements, P-body Disruption and ARE-mRNA Stabilization