Reprogramming of from Virulent to Persistent Mode Revealed by Complex RNA-seq Analysis
To establish infection and colonize within a host, infecting pathogens have to cope with a variety of destructive surroundings. The food-borne pathogen Y. pseudotuberculosis can cause persistent infection in mice. Upon infection, Y. pseudotuberculosis passes the anti-microbial gastrointestinal milieu and finally remains associated with lymphoid follicles in cecal tissue surrounded by polymorphonuclear leukocytes, indicating that the bacteria are exposed to multiple environmental cues. We performed complex RNA-seq of small cecal biopsies of infected mice to reveal Y. pseudotuberculosis gene expression in vivo. We found that Y. pseudotuberculosis underwent reprogramming from a virulent phenotype, expressing virulence genes during early infection, to an adapted phenotype capable of persisting in the harsh cecal environment. Persistence was characterized by a novel expression pattern with down-regulation of virulence genes and up-regulation of genes involved in anaerobiosis, chemotaxis, and protection against oxidative and acidic stress. Mutagenesis of selected genes revealed that the regulator rovA was critical for the establishment of infection, and that arcA, fnr, frdA, and wrbA play critical roles in maintaining infection for long periods of time. Our study shows the power of RNA deep sequencing, which can be used to reveal the in vivo expression patterns of small amounts of bacteria in complex intestinal environments.
Vyšlo v časopise:
Reprogramming of from Virulent to Persistent Mode Revealed by Complex RNA-seq Analysis. PLoS Pathog 11(1): e32767. doi:10.1371/journal.ppat.1004600
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1004600
Souhrn
To establish infection and colonize within a host, infecting pathogens have to cope with a variety of destructive surroundings. The food-borne pathogen Y. pseudotuberculosis can cause persistent infection in mice. Upon infection, Y. pseudotuberculosis passes the anti-microbial gastrointestinal milieu and finally remains associated with lymphoid follicles in cecal tissue surrounded by polymorphonuclear leukocytes, indicating that the bacteria are exposed to multiple environmental cues. We performed complex RNA-seq of small cecal biopsies of infected mice to reveal Y. pseudotuberculosis gene expression in vivo. We found that Y. pseudotuberculosis underwent reprogramming from a virulent phenotype, expressing virulence genes during early infection, to an adapted phenotype capable of persisting in the harsh cecal environment. Persistence was characterized by a novel expression pattern with down-regulation of virulence genes and up-regulation of genes involved in anaerobiosis, chemotaxis, and protection against oxidative and acidic stress. Mutagenesis of selected genes revealed that the regulator rovA was critical for the establishment of infection, and that arcA, fnr, frdA, and wrbA play critical roles in maintaining infection for long periods of time. Our study shows the power of RNA deep sequencing, which can be used to reveal the in vivo expression patterns of small amounts of bacteria in complex intestinal environments.
Zdroje
1. Simonet M, Richard S, Berche P (1990) Electron microscopic evidence for in vivo extracellular localization of Yersinia pseudotuberculosis harboring the pYV plasmid. Infect Immun 58: 841–845. 2307522
2. Westermark L, Fahlgren A, Fallman M (2014) Yersinia pseudotuberculosis efficiently escapes polymorphonuclear neutrophils during early infection. Infect Immun 82: 1181–1191. doi: 10.1128/IAI.01634-13 24379291
3. Galan JE, Wolf-Watz H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature 444: 567–573. doi: 10.1038/nature05272 17136086
4. Viboud GI, Bliska JB (2005) Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol 59: 69–89. doi: 10.1146/annurev.micro.59.030804.121320 15847602
5. Durand EA, Maldonado-Arocho FJ, Castillo C, Walsh RL, Mecsas J (2010) The presence of professional phagocytes dictates the number of host cells targeted for Yop translocation during infection. Cellular microbiology 12: 1064–1082. doi: 10.1111/j.1462-5822.2010.01451.x 20148898
6. Fahlgren A, Avican K, Westermark L, Nordfelth R, Fallman M (2014) Colonization of cecum is important for development of persistent infection by Yersinia pseudotuberculosis. Infect Immun 82: 3471–3482. doi: 10.1128/IAI.01793-14 24891107
7. Puylaert JB, Van der Zant FM, Mutsaers JA (1997) Infectious ileocecitis caused by Yersinia, Campylobacter, and Salmonella: clinical, radiological and US findings. European radiology 7: 3–9. doi: 10.1007/s003300050098 9000386
8. Monack DM, Mueller A, Falkow S (2004) Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol 2: 747–765. doi: 10.1038/nrmicro955 15372085
9. Ternhag A, Torner A, Svensson A, Ekdahl K, Giesecke J (2008) Short- and long-term effects of bacterial gastrointestinal infections. Emerg Infect Dis 14: 143–148. doi: 10.3201/eid1401.070524 18258094
10. Cohen NR, Lobritz MA, Collins JJ (2013) Microbial persistence and the road to drug resistance. Cell host & microbe 13: 632–642. doi: 10.1016/j.chom.2013.05.009 23768488
11. Monack DM, Bouley DM, Falkow S (2004) Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. J Exp Med 199: 231–241. doi: 10.1084/jem.20031319 14734525
12. Monack DM (2012) Salmonella persistence and transmission strategies. Curr Opin Microbiol 15: 100–107. doi: 10.1016/j.mib.2011.10.013 22137596
13. Stecher B, Paesold G, Barthel M, Kremer M, Jantsch J, et al. (2006) Chronic Salmonella enterica serovar Typhimurium-induced colitis and cholangitis in streptomycin-pretreated Nramp1+/+ mice. Infect Immun 74: 5047–5057. doi: 10.1128/IAI.00072-06 16926396
14. Monack DM (2013) Helicobacter and salmonella persistent infection strategies. Cold Spring Harbor perspectives in medicine 3: a010348. doi: 10.1101/cshperspect.a010348 24296347
15. Angelichio MJ, Camilli A (2002) In vivo expression technology. Infect Immun 70: 6518–6523. doi: 10.1128/IAI.70.12.6518-6523.2002 12438320
16. Saenz HL, Dehio C (2005) Signature-tagged mutagenesis: technical advances in a negative selection method for virulence gene identification. Curr Opin Microbiol 8: 612–619. doi: 10.1016/j.mib.2005.08.013 16126452
17. Fukuto HS, Svetlanov A, Palmer LE, Karzai AW, Bliska JB (2010) Global gene expression profiling of Yersinia pestis replicating inside macrophages reveals the roles of a putative stress-induced operon in regulating type III secretion and intracellular cell division. Infect Immun 78: 3700–3715. doi: 10.1128/IAI.00062-10 20566693
18. Lathem WW, Crosby SD, Miller VL, Goldman WE (2005) Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. Proc Natl Acad Sci U S A 102: 17786–17791. doi: 10.1073/pnas.0506840102 16306265
19. Mandlik A, Livny J, Robins WP, Ritchie JM, Mekalanos JJ, et al. (2011) RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell host & microbe 10: 165–174. doi: 10.1016/j.chom.2011.07.007 21843873
20. Oellerich MF, Jacobi CA, Freund S, Niedung K, Bach A, et al. (2007) Yersinia enterocolitica infection of mice reveals clonal invasion and abscess formation. Infect Immun 75: 3802–3811. doi: 10.1128/IAI.00419-07 17562774
21. Handley SA, Newberry RD, Miller VL (2005) Yersinia enterocolitica invasin-dependent and invasin-independent mechanisms of systemic dissemination. Infect Immun 73: 8453–8455. doi: 10.1128/IAI.73.12.8453-8455.2005 16299350
22. Brubaker RR, Surgalla MJ (1964) The Effect of Ca++ and Mg++ on Lysis, Growth, and Production of Virulence Antigens by Pasteurella Pestis. J Infect Dis 114: 13–25. doi: 10.1093/infdis/114.1.13 14118042
23. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261–5267. doi: 10.1128/AEM.00062-07 17586664
24. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, et al. (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328: 228–231. doi: 10.1126/science.1179721 20203013
25. Cullender TC, Chassaing B, Janzon A, Kumar K, Muller CE, et al. (2013) Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe 14: 571–581. doi: 10.1016/j.chom.2013.10.009 24237702
26. Derrien M, Vaughan EE, Plugge CM, de Vos WM (2004) Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54: 1469–1476. doi: 10.1099/ijs.0.02873-0 15388697
27. Kapatral V, Olson JW, Pepe JC, Miller VL, Minnich SA (1996) Temperature-dependent regulation of Yersinia enterocolitica Class III flagellar genes. Molecular microbiology 19: 1061–1071. doi: 10.1046/j.1365-2958.1996.452978.x 8830263
28. Young GM, Badger JL, Miller VL (2000) Motility is required to initiate host cell invasion by Yersinia enterocolitica. Infect Immun 68: 4323–4326. doi: 10.1128/IAI.68.7.4323-4326.2000 10858252
29. Revell PA, Miller VL (2000) A chromosomally encoded regulator is required for expression of the Yersinia enterocolitica inv gene and for virulence. Molecular microbiology 35: 677–685. doi: 10.1046/j.1365-2958.2000.01740.x 10672189
30. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40: D109–114. doi: 10.1093/nar/gkr988 22080510
31. Jack RL, Sargent F, Berks BC, Sawers G, Palmer T (2001) Constitutive expression of Escherichia coli tat genes indicates an important role for the twin-arginine translocase during aerobic and anaerobic growth. J Bacteriol 183: 1801–1804. doi: 10.1128/JB.183.5.1801-1804.2001 11160116
32. Ellison DW, Miller VL (2006) Regulation of virulence by members of the MarR/SlyA family. Curr Opin Microbiol 9: 153–159. doi: 10.1016/j.mib.2006.02.003 16529980
33. Heroven AK, Sest M, Pisano F, Scheb-Wetzel M, Steinmann R, et al. (2012) Crp induces switching of the CsrB and CsrC RNAs in Yersinia pseudotuberculosis and links nutritional status to virulence. Front Cell Infect Microbiol 2: 158. doi: 10.3389/fcimb.2012.00158 23251905
34. Nuss AM, Schuster F, Kathrin Heroven A, Heine W, Pisano F, et al. (2014) A direct link between the global regulator PhoP and the Csr regulon in Y. pseudotuberculosis through the small regulatory RNA CsrC. RNA biology 11: 580–593. 24786463
35. Bucker R, Heroven AK, Becker J, Dersch P, Wittmann C (2014) The Pyruvate—Tricarboxylic Acid Cycle Node: a Focal Point of Virulence Control in the Enteric Pathogen Yersinia pseudotuberculosis. J Biol Chem doi: 10.1074/jbc.M114.581348 25164818
36. Frost S, Ho O, Login FH, Weise CF, Wolf-Watz H, et al. (2012) Autoproteolysis and intramolecular dissociation of Yersinia YscU precedes secretion of its C-terminal polypeptide YscU(CC). PLoS One 7: e49349. doi: 10.1371/journal.pone.0049349 23185318
37. Taveirne ME, Theriot CM, Livny J, DiRita VJ (2013) The complete Campylobacter jejuni transcriptome during colonization of a natural host determined by RNAseq. PLoS One 8: e73586. doi: 10.1371/journal.pone.0073586 23991199
38. Westermann AJ, Gorski SA, Vogel J (2012) Dual RNA-seq of pathogen and host. Nature reviews Microbiology 10: 618–630. doi: 10.1038/nrmicro2852 22890146
39. Schwarz S, West TE, Boyer F, Chiang WC, Carl MA, et al. (2010) Burkholderia Type VI Secretion Systems Have Distinct Roles in Eukaryotic and Bacterial Cell Interactions. PLoS Pathog 6. doi: 10.1371/journal.ppat.1001068 20865170
40. La Ragione RM, Sayers AR, Woodward MJ (2000) The role of fimbriae and flagella in the colonization, invasion and persistence of Escherichia coli O78:K80 in the day-old-chick model. Epidemiol Infect 124: 351–363. doi: 10.1017/S0950268899004045 10982058
41. Evans MR, Fink RC, Vazquez-Torres A, Porwollik S, Jones-Carson J, et al. (2011) Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium. BMC Microbiol 11: 58. doi: 10.1186/1471-2180-11-58 21418628
42. Kato Y, Sugiura M, Mizuno T, Aiba H (2007) Effect of the arcA mutation on the expression of flagella genes in Escherichia coli. Biosci Biotechnol Biochem 71: 77–83. doi: 10.1271/bbb.60375 17213678
43. Flamez C, Ricard I, Arafah S, Simonet M, Marceau M (2008) Phenotypic analysis of Yersinia pseudotuberculosis 32777 response regulator mutants: new insights into two-component system regulon plasticity in bacteria. Int J Med Microbiol 298: 193–207. doi: 10.1016/j.ijmm.2007.05.005 17765656
44. Parish T, Smith DA, Roberts G, Betts J, Stoker NG (2003) The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology 149: 1423–1435. doi: 10.1099/mic.0.26245-0 12777483
45. Rickman L, Saldanha JW, Hunt DM, Hoar DN, Colston MJ, et al. (2004) A two-component signal transduction system with a PAS domain-containing sensor is required for virulence of Mycobacterium tuberculosis in mice. Biochem Biophys Res Commun 314: 259–267. doi: 10.1016/j.bbrc.2003.12.082 14715274
46. De Souza-Hart JA, Blackstock W, Di Modugno V, Holland IB, Kok M (2003) Two-component systems in Haemophilus influenzae: a regulatory role for ArcA in serum resistance. Infect Immun 71: 163–172. doi: 10.1128/IAI.71.1.163-172.2003 12496162
47. Wong SM, Alugupalli KR, Ram S, Akerley BJ (2007) The ArcA regulon and oxidative stress resistance in Haemophilus influenzae. Mol Microbiol 64: 1375–1390. doi: 10.1111/j.1365-2958.2007.05747.x 17542927
48. Sengupta N, Paul K, Chowdhury R (2003) The global regulator ArcA modulates expression of virulence factors in Vibrio cholerae. Infect Immun 71: 5583–5589. doi: 10.1128/IAI.71.10.5583-5589.2003 14500477
49. Marteyn B, West NP, Browning DF, Cole JA, Shaw JG, et al. (2010) Modulation of Shigella virulence in response to available oxygen in vivo. Nature 465: 355–358. doi: 10.1038/nature08970 20436458
50. Cathelyn JS, Crosby SD, Lathem WW, Goldman WE, Miller VL (2006) RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proceedings of the National Academy of Sciences of the United States of America 103: 13514–13519. doi: 10.1073/pnas.0603456103 16938880
51. Backhans A, Fellstrom C, Lambertz ST (2011) Occurrence of pathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis in small wild rodents. Epidemiol Infect 139: 1230–1238. doi: 10.1017/S0950268810002463 21073763
52. Bolin I, Portnoy DA, Wolf-Watz H (1985) Expression of the temperature-inducible outer membrane proteins of yersiniae. Infect Immun 48: 234–240. 3980086
53. Milton DL, Norqvist A, Wolf-Watz H (1992) Cloning of a metalloprotease gene involved in the virulence mechanism of Vibrio anguillarum. J Bacteriol 174: 7235–7244. 1429449
54. Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 1: 581–585. doi: 10.1038/nprot.2006.83 17406285
55. Zoetendal EG, Booijink CC, Klaassens ES, Heilig HG, Kleerebezem M, et al. (2006) Isolation of RNA from bacterial samples of the human gastrointestinal tract. Nat Protoc 1: 954–959. doi: 10.1038/nprot.2006.143 17406329
56. Borgstrom E, Lundin S, Lundeberg J (2011) Large scale library generation for high throughput sequencing. PLoS One 6: e19119. doi: 10.1371/journal.pone.0019119 21589638
57. Cai G, Li H, Lu Y, Huang X, Lee J, et al. (2012) Accuracy of RNA-Seq and its dependence on sequencing depth. BMC bioinformatics 13 Suppl 13: S5. doi: 10.1186/1471-2105-13-S13-S5 23320920
58. Friedman J, Alm EJ (2012) Inferring correlation networks from genomic survey data. PLoS Comput Biol 8: e1002687. doi: 10.1371/journal.pcbi.1002687 23028285
59. Gan Q, Schones DE, Ho Eun S, Wei G, Cui K, et al. (2010) Monovalent and unpoised status of most genes in undifferentiated cell-enriched Drosophila testis. Genome biology 11: R42. doi: 10.1186/gb-2010-11-4-r42 20398323
60. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80. doi: 10.1186/gb-2004-5-10-r80 15461798
61. Alexa A, Rahnenfuhrer J, Lengauer T (2006) Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22: 1600–1607. doi: 10.1093/bioinformatics/btl140 16606683
62. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, et al. (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19: 1639–1645. doi: 10.1101/gr.092759.109 19541911
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 1
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Infections in Humans and Animals: Pathophysiology, Detection, and Treatment
- The Phylogenetically-Related Pattern Recognition Receptors EFR and XA21 Recruit Similar Immune Signaling Components in Monocots and Dicots
- Specificity and Dynamics of Effector and Memory CD8 T Cell Responses in Human Tick-Borne Encephalitis Virus Infection
- Viral Activation of MK2-hsp27-p115RhoGEF-RhoA Signaling Axis Causes Cytoskeletal Rearrangements, P-body Disruption and ARE-mRNA Stabilization