#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Cell Cycle-Independent Phospho-Regulation of Fkh2 during Hyphal Growth Regulates Pathogenesis


The fungus Candida albicans is a commensal in the human microbiota, responsible for superficial infections such as oral and vaginal thrush. However, it can become highly virulent, causing life-threatening systemic candidemia in severely immunocompromised patients, including those taking immunosuppressive drugs for transplantation, sufferers of AIDS and neutropenia, and individuals undergoing chemotherapy or at extremes of age. With a rapidly increasing ageing population worldwide, C. albicans and other fungal pathogens will become more prevalent, demanding a greater understanding of their pathogenesis for the development of effective therapeutics. Fungal pathogenicity requires a coordinated change in the pattern of gene expression orchestrated by a set of transcription factors. Here we have discovered that a transcription factor, Fkh2, is modified by phosphorylation under the control of the kinases Cdc28 and Cbk1 in response to conditions that activate virulence factor expression. Fkh2 is involved in a wide variety of cellular processes including cell proliferation, but this phosphorylation endows it with a specialized function in promoting the expression of genes required for tissue invasion, biofilm formation, and pathogenesis in the host. This study highlights the role of protein phosphorylation in regulating pathogenesis and furthers our understanding of the pathogenic switch in this important opportunistic fungal pathogen.


Vyšlo v časopise: Cell Cycle-Independent Phospho-Regulation of Fkh2 during Hyphal Growth Regulates Pathogenesis. PLoS Pathog 11(1): e32767. doi:10.1371/journal.ppat.1004630
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1004630

Souhrn

The fungus Candida albicans is a commensal in the human microbiota, responsible for superficial infections such as oral and vaginal thrush. However, it can become highly virulent, causing life-threatening systemic candidemia in severely immunocompromised patients, including those taking immunosuppressive drugs for transplantation, sufferers of AIDS and neutropenia, and individuals undergoing chemotherapy or at extremes of age. With a rapidly increasing ageing population worldwide, C. albicans and other fungal pathogens will become more prevalent, demanding a greater understanding of their pathogenesis for the development of effective therapeutics. Fungal pathogenicity requires a coordinated change in the pattern of gene expression orchestrated by a set of transcription factors. Here we have discovered that a transcription factor, Fkh2, is modified by phosphorylation under the control of the kinases Cdc28 and Cbk1 in response to conditions that activate virulence factor expression. Fkh2 is involved in a wide variety of cellular processes including cell proliferation, but this phosphorylation endows it with a specialized function in promoting the expression of genes required for tissue invasion, biofilm formation, and pathogenesis in the host. This study highlights the role of protein phosphorylation in regulating pathogenesis and furthers our understanding of the pathogenic switch in this important opportunistic fungal pathogen.


Zdroje

1. Perlroth J, Choi B, Spellberg B (2007) Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Medical Mycology 45: 321–346. doi: 10.1080/13693780701218689 17510856

2. Kullberg BJ, Filler SG (2002) Candidemia. In: Calderone RA, editors. Candida and Candidiasis. Washington DC: ASM Press. pp. 327–340.

3. Runke M (2002) Skin and mucous infections. In: Calderone R, editors. Candida and Candidiasis. Washington: ASM Press. pp. 307–325.

4. Sudbery PE, Gow NAR, Berman J (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12: 317–324. doi: 10.1016/j.tim.2004.05.008 15223059

5. Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9: 737–748. doi: 10.1038/nrmicro2636 21844880

6. Gow NA, van de Veerdonk FL, Brown AJ, Netea MG (2012) Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10: 112–122.

7. Moyes DL, Runglall M, Murciano C, Shen C, Nayar D, Thavaraj S, Kohli A, Islam A, Mora-Montes H, Challacombe SJ, Naglik JR (2010) A Biphasic Innate Immune MAPK Response Discriminates between the Yeast and Hyphal Forms of Candida albicans in Epithelial Cells. Cell Host & Microbe 8: 225–235. doi: 10.1016/j.chom.2010.08.002 20833374

8. Ray TL, Payne CD (1988) Scanning electron-microscopy of epidermal adherence and cavitation in murine candidiasis—a role for Candida acid proteinase. Infect Immun 56: 1942–1949. 3294180

9. Scherwitz C (1982) Ultrastructure of Human Cutaneous Candidosis. Journal of Investigative Dermatology 78: 200–205. doi: 10.1111/1523-1747.ep12506451 7035576

10. Dalle F, Wächtler B, L’Ollivier C, Holland G, Bannert N, Wilson D, Labruère C, Bonnin A, Hube B (2010) Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cellular Microbiology 12: 248–271. doi: 10.1111/j.1462-5822.2009.01394.x 19863559

11. Park H, Myers CL, Sheppard DC, Phan QT, Sanchez AA, Edwards JE, Filler SG (2005) Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cellular Microbiology 7: 499–510. doi: 10.1111/j.1462-5822.2004.00476.x 15760450

12. Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, Ibrahim AS, Edwards JE Jr., Filler SG (2007) Als3 Is a Candida albicans Invasin That Binds to Cadherins and Induces Endocytosis by Host Cells. PLoS Biol 5: e64. doi: 10.1371/journal.pbio.0050064 17311474

13. Zakikhany K, Naglik JR, Schmidt-Westhausen A, Holland G, Schaller M, Hube B (2007) In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cellular Microbiology 9: 2938–2954. doi: 10.1111/j.1462-5822.2007.01009.x 17645752

14. Lorenz MC, Bender JA, Fink GR (2004) Transcriptional Response of Candida albicans upon Internalization by Macrophages. Euk Cell 3: 1076–1087. doi: 10.1128/EC.3.5.1076-1087.2004 15470236

15. Grubb SEW, Murdoch C, Sudbery PE, Saville SP, Lopez-Ribot JL, Thornhill MH (2009) Adhesion of Candida albicans to Endothelial Cells under Physiological Conditions of Flow. Infect Immun 77: 3872–3878. doi: 10.1128/IAI.00518-09 19581400

16. Finkel JS, Mitchell AP (2011) Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9: 109–118. doi: 10.1038/nrmicro2475 21189476

17. Wächtler B, Wilson D, Haedicke K, Dalle F, Hube B (2011) From Attachment to Damage: Defined Genes of Candida albicans Mediate Adhesion, Invasion and Damage during Interaction with Oral Epithelial Cells. PLoS ONE 6: e17046. doi: 10.1371/journal.pone.0017046 21407800

18. Sanglard D, Hube B, Monod M, Odds FC, Gow NAR (1997) A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 65: 3539–3546. 9284117

19. Hoyer LL, Payne TL, Bell M, Myers AM, Scherer S (1998) Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet 33: 451–459. doi: 10.1007/s002940050359 9644209

20. Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283: 1535–1538. doi: 10.1126/science.283.5407.1535 10066176

21. Carlisle PL, Kadosh D (2013) A genome-wide transcriptional analysis of morphology determination in Candida albicans. Mol Biol Cell 24: 246–260. doi: 10.1091/mbc.E12-01-0065 23242994

22. Kadosh D, Johnson AD (2005) Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell 16: 2903–2912. doi: 10.1091/mbc.E05-01-0073 15814840

23. Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A, Bouin AP, Sensen CW, Hogues H, het Hoog M, Gordon P, Rigby T, Benoit F, Tessier DC, Thomas DY, Whiteway M (2002) Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 13: 3452–3465. doi: 10.1091/mbc.E02-05-0272 12388749

24. Shapiro RS, Robbins N, Cowen LE (2011) Regulatory Circuitry Governing Fungal Development, Drug Resistance, and Disease. Microbiol Mol Biol Rev 75: 213–267. doi: 10.1128/MMBR.00045-10 21646428

25. Zheng X, Wang Y, Wang Y (2004) Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J 23: 1845–1856. doi: 10.1038/sj.emboj.7600195 15071502

26. Court H, Sudbery P (2007) Regulation of Cdc42 GTPase activity in the formation of hyphae in Candida albicans. Mol Biol Cell 18: 265–281. doi: 10.1091/mbc.E06-05-0411 17093060

27. Zheng XD, Lee RTH, Wang YM, Lin QS, Wang Y (2007) Phosphorylation of Rga2, a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth. EMBO J 26: 3760–3769. doi: 10.1038/sj.emboj.7601814 17673907

28. Zeng G, Wang YM, Wang Y (2012) Cdc28−Cln3 phosphorylation of Sla1 regulates actin patch dynamics in different modes of fungal growth. Mol Biol Cell. doi: 10.1091/mbc.E12-03-0231 22787279

29. Bishop A, Lane R, Beniston R, Lazo B, Smythe C, Sudbery P (2010) Hyphal growth in Candida albicans requires the phosphorylation of Sec2 by the Cdc28-Ccn1/Hgc1 kinase. EMBO J 29: 2930–2942. doi: 10.1038/emboj.2010.158 20639857

30. Sinha I, Wang YM, Philp R, Li CR, Yap WH, Wang Y (2007) Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development. Developmental Cell 13: 421–432. doi: 10.1016/j.devcel.2007.06.011 17765684

31. Tamaskovic R, Bichsel SJ, Hemmings BA (2003) NDR family of AGC kinases—essential regulators of the cell cycle and morphogenesis. FEBS Letters 546: 73–80. doi: 10.1016/S0014-5793(03)00474-5 12829239

32. McNemar MD, Fonzi WA (2002) Conserved serine/threonine kinase encoded by CBK1 regulates expression of several hypha-associated transcripts and genes encoding cell wall proteins in Candida albicans. J Bacteriol 184: 2058–2061. doi: 10.1128/JB.184.7.2058-2061.2002 11889116

33. Song Y, Cheon SA, Lee KE, Lee SY, Lee BK, Oh DB, Kang HA, Kim JY (2008) Role of the RAM Network in Cell Polarity and Hyphal Morphogenesis in Candida albicans. Mol Biol Cell 19: 5456–5477. doi: 10.1091/mbc.E08-03-0272 18843050

34. Maerz S, Seiler S (2010) Tales of RAM and MOR: NDR kinase signaling in fungal morphogenesis. Curr Opin Microbiol 13: 663–671. doi: 10.1016/j.mib.2010.08.010 20869909

35. Hou MC, Wiley DJ, Verde F, McCollum D (2003) Mob2p interacts with the protein kinase Orb6p to promote coordination of cell polarity with cell cycle progression. J Cell Sci 116: 125–135. doi: 10.1242/jcs.00206 12456722

36. Yarden O, Plamann M, Ebbole DJ, Yanofsky C (1992) Cot-1, A Gene Required for Hyphal Elongation in Neurospora-Crassa, Encodes A Protein-Kinase. Embo Journal 11: 2159–2166. 1534751

37. Weiss EL, Kurischko C, Zhang C, Shokat K, Drubin DG, Luca FC (2002) The Saccharomyces cerevisiae Mob2p-Cbk1p kinase complex promotes polarized growth and acts with the mitotic exit network to facilitate daughter cell-specific localization of Ace2p transcription factor. J Cell Biol 158: 885–900. doi: 10.1083/jcb.200203094 12196508

38. Bidlingmaier S, Weiss EL, Seidel C, Drubin DG, Snyder M (2001) The Cbk1p pathway is important for polarized cell growth and cell separation in Saccharomyces cerevisiae. Mol Cell Biol 21: 2449–2462. doi: 10.1128/MCB.21.7.2449-2462.2001 11259593

39. Nelson B, Kurischko C, Horecka J, Mody M, Nair P, Pratt L, Zougman A, Mcbroom LDB, Hughes TR, Boone C, Luca FC (2003) RAM: A conserved signaling network that regulates Ace2p transcriptional activity and polarized morphogenesis. Mol Biol Cell 14: 3782–3803. doi: 10.1091/mbc.E03-01-0018 12972564

40. Gutierrez-Escribano P, Zeidler U, Belen SM, Bachellier-Bassi S, Clemente-Blanco A, Bonhomme J, Vazquez de Aldana CR, d’Enfert C, Correa-Bordes J (2012) The NDR/LATS Kinase Cbk1 Controls the Activity of the Transcriptional Regulator Bcr1 during Biofilm Formation in Candida albicans. Plos Pathogens 8. doi: 10.1371/journal.ppat.1002683 22589718

41. Zhu GF, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B (2000) Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406: 90–94. doi: 10.1038/35021046 10894548

42. Costanzo M, Schub O, Andrews B (2003) G(1) transcription factors are differentially regulated in Saccharomyces cerevisiae by the Swi6-binding protein Stb1. Mol Cell Biol 23: 5064–5077. doi: 10.1128/MCB.23.14.5064-5077.2003 12832490

43. Pic-Taylor A, Darieva Z, Morgan BA, Sharrocks AD (2004) Regulation of cell cycle-specific gene expression through cyclin-dependent kinase-mediated phosphorylation of the forkhead transcription factor Fkh2p. Mol Cell Biol 24: 10036–10046. doi: 10.1128/MCB.24.22.10036-10046.2004 15509804

44. Finley KR, Berman J (2005) Microtubules in Candida albicans hyphae drive nuclear dynamics and connect cell cycle progression to morphogenesis. Euk Cell 4: 1697–1711. doi: 10.1128/EC.4.10.1697-1711.2005 16215177

45. Bensen ES, Filler SG, Berman J (2002) A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. Euk Cell 1: 787–798. doi: 10.1128/EC.1.5.787-798.2002 12455696

46. Chauvel M, Nesseir A, Cabral V, Znaidi S, Goyard S, Bachellier-Bassi S, Firon A, Legrand M, Diogo D, Naulleau C, Rossignol T, d’Enfert C (2012) A Versatile Overexpression Strategy in the Pathogenic Yeast Candida albicans: Identification of Regulators of Morphogenesis and Fitness. PLoS ONE 7: e45912. doi: 10.1371/journal.pone.0045912 23049891

47. Hiller E, Heine S, Brunner H, Rupp S (2007) Candida albicans Sun41p, a putative glycosidase, is involved in morphogenesis, cell wall biogenesis, and biofilm formation. Euk Cell 6: 2056–2065. doi: 10.1128/EC.00285-07 17905924

48. Leng P, Sudbery PE, Brown AJP (2000) Rad6p represses yeast-hypha morphogenesis in the human fungal pathogen Candida albicans. Mol Microbiol 35: 1264–1275. doi: 10.1046/j.1365-2958.2000.01801.x 10712706

49. Gow NAR, Gooday GW (1984) A Model for the Germ Tube Formation and Mycelial Growth Form of Candida albicans. Sabouraudia-Journal of Medical and Veterinary Mycology 22: 137–143. doi: 10.1080/00362178485380211 6374934

50. Tabb MM, Tongaonkar P, Vu L, Nomura M (2000) Evidence for separable functions of Srp1p, the yeast homolog of importin alpha (Karyopherin alpha): Role for Srp1p and Sts1p in protein degradation. Mol Cell Biol 20: 6062–6073. doi: 10.1128/MCB.20.16.6062-6073.2000 10913188

51. Formosa T (2008) FACT and the reorganized nucleosome. Molecular Biosystems 4: 1085–1093. doi: 10.1039/b812136b 18931784

52. Mazanka E, Alexander J, Yeh BJ, Charoenpong P, Lowery DM, Yaffe M, Weiss EL (2008) The NDR/LATS family kinase Cbk1 directly controls transcriptional asymmetry. Plos Biology 6: 1778–1790. doi: 10.1371/journal.pbio.0060203 18715118

53. Hollenhorst PC, Bose ME, Mielke MR, Muller U, Fox CA (2000) Forkhead genes in transcriptional silencing, cell morphology and the cell cycle: Overlapping and distinct functions for FKH1 and FKH2 in Saccharomyces cerevisiae. Genetics 154: 1533–1548. 10747051

54. Hollenhorst PC, Pietz G, Fox CA (2001) Mechanisms controlling differential promoter-occupancy by the yeast forkhead proteins Fkh1p and Fkh2p: implications for regulating the cell cycle and differentiation. Gene Dev 15: 2445–2456. doi: 10.1101/gad.906201 11562353

55. Hollenhorst PC, Bose ME, Mielke MR, Muller U, Fox CA (2000) Forkhead genes in transcriptional silencing, cell morphology and the cell cycle: Overlapping and distinct functions for FKH1 and FKH2 in Saccharomyces cerevisiae. Genetics 154: 1533–1548. 10747051

56. Zhu GF, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B (2000) Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406: 90–94. doi: 10.1038/35021046 10894548

57. Bachewich C, Nantel A, Whiteway M (2005) Cell cycle arrest during S or M phase generates polarized growth via distinct signals in Candida albicans. Mol Microbiol 57: 942–959. doi: 10.1111/j.1365-2958.2005.04727.x 16091036

58. Chapa Y, Lazo B, Lee S, Regan H, Sudbery P (2011) The mating projections of Saccharomyces cerevisiae and Candida albicans show key characteristics of hyphal growth. Fungal Biology 115: 547–556. doi: 10.1016/j.funbio.2011.02.001 21640318

59. Loeb JJ, Sepulveda-Becerra M, Hazan I, Liu HP (1999) A G1 cyclin is necessary for maintenance of filamentous growth in Candida albicans. Mol Cell Biol 19: 4019–4027. 10330142

60. Luo G, Ibrahim AS, Spellberg B, Nobile CJ, Mitchell AP, Fu Y (2010) Candida albicans Hyr1p Confers Resistance to Neutrophil Killing and Is a Potential Vaccine Target. Journal of Infectious Diseases 201: 1718–1728. doi: 10.1086/652407 20415594

61. Knott SR, V, Peace JM, Ostrow A, Gan Y, Rex AE, Viggiani CJ, Tavare S, Aparicio OM (2012) Forkhead Transcription Factors Establish Origin Timing and Long-Range Clustering in S. cerevisiae. Cell 148: 99–111. doi: 10.1016/j.cell.2011.12.012 22265405

62. Lu Y, Su C, Liu H-P (2012) A GATA Transcription Factor Recruits Hda1 in Response to Reduced Tor1 Signaling to Establish a Hyphal Chromatin State in Candida albicans. Plos Pathogens 8. doi: 10.1371/journal.ppat.1002663 22536157

63. Lu Y, Su C, Wang A, Liu H-P (2011) Hyphal Development in Candida albicans Requires Two Temporally Linked Changes in Promoter Chromatin for Initiation and Maintenance. Plos Biology 9. doi: 10.1371/journal.pbio.1001105 21811397

64. Gola S, Martin R, Walther A, Dunkler A, Wendland J (2003) New modules for PCR-based gene targeting in Candida albicans: rapid and efficient gene targeting using 100 bp of flanking homology region. Yeast 20: 1339–1347. doi: 10.1002/yea.1044 14663826

65. Li CR, Lee RT-H, Wang YM, Zheng XD, Wang Y (2007) Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation. J Cell Sci 120: 1898–1907. doi: 10.1242/jcs.002931 17504812

66. Schaub Y, Dunkler A, Walther A, Wendland J (2006) New pFA-cassettes for PCR-based gene manipulation in Candida albicans. Journal of Basic Microbiology 46: 416–429. doi: 10.1002/jobm.200510133 17009297

67. Caballero-Lima D, Sudbery PE (2014) In Candida albicans, phosphorylation of Exo84 by Cdk1-Hgc1 is necessary for efficient hyphal extension. Mol Biol Cell 25: 1097–1110. doi: 10.1091/mbc.E13-11-0688 24501427

68. Smyth GK (2005) Limma: Linear models for microarray data. In: Gentalman R, Carey V, Huber W, editors. Bioinformatics and Computational Biology Solution Using R and Bioconductor. pp. 397–420.

69. Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A, Smyth GK (2007) A comparison of background correction methods for two-colour microarrays. Bioinformatics 23: 2700–2707. doi: 10.1093/bioinformatics/btm412 17720982

70. Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31: 265–273. doi: 10.1016/S1046-2023(03)00155-5 14597310

71. Smyth GK (2005) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3: Article 3. doi: 10.2202/1544-6115.1027 16646809

72. Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate—A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 57: 289–300.

73. Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23: 257–258. doi: 10.1093/bioinformatics/btl567 17098774

74. Nobile CJ, Nett JE, Hernday AD, Homann OR, Deneault JS, Nantel A, Andes DR, Johnson AD, Mitchell AP (2009) Biofilm Matrix Regulation by Candida albicans Zap1. PLoS Biol 7: e1000133. doi: 10.1371/journal.pbio.1000133 19529758

75. Rupniak HT, Rowlatt C, Lane EB, Steele JG, Trejdosiewicz LK, Laskiewicz B, Povey S, Hill BT (1985) Characteristics of 4 New Human Cell-Lines Derived from Squamous-Cell Carcinomas of the Head and Neck. Journal of the National Cancer Institute 75: 621–635. 2413234

76. Care RA, Trevethick J, Binley KM, Sudbery PE (1999) The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol 34: 792–798. doi: 10.1046/j.1365-2958.1999.01641.x 10564518

77. Böckmuhl DP, Krishnamurthy S, Gerads M, Sonneborn A, Ernst JF (2001) Distinct and redundant roles of the two protein kinase A isoforms Tpk1p and Tpk2p in morphogenesis and growth of Candida albicans. Mol Microbiol 42: 1243–1257. 11886556

78. Chen JY, Zhou S, Wang Q, Chen X, Pan T, Liu HP (2000) Crk1, a novel Cdc2-related protein kinase, is required for hyphal development and virulence in Candida albicans. Mol Cell Biol 20: 8696–8708. doi: 10.1128/MCB.20.23.8696-8708.2000 11073971

79. Shapiro RS, Sellam A, Tebbji F, Whiteway M, Nantel A, Cowen LE (2012) Pho85, Pcl1, and Hms1 Signaling Governs Candida albicans Morphogenesis Induced by High Temperature or Hsp90 Compromise. Curr Biol 22: 461–470. doi: 10.1016/j.cub.2012.01.062 22365851

80. Smith DA, Nicholls S, Morgan BA, Brown AJP, Quinn J (2004) A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell 15: 4179–4190. doi: 10.1091/mbc.E04-03-0181 15229284

81. Csank C, Schroppel K, Leberer E, Harcus D, Mohamed O, Meloche S, Thomas DY, Whiteway M (1998) Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 66: 2713–2721. 9596738

82. Goyard S, Knechtle P, Chauvel M, Mallet A, Prevost MC, Proux C, Coppee JY, Schwartz P, Dromer F, Park H, Filler SG, Janbon G, d’Enfert C (2008) The Yak1 kinase is involved in the initiation and maintenance of hyphal growth in Candida albicans. Mol Biol Cell 19: 2251–2266. doi: 10.1091/mbc.E07-09-0960 18321992

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2015 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#