: Adaptations to the Dixenous Life Cycle Analyzed by Genome Sequencing, Transcriptome Profiling and Co-infection with
In this work we performed a comprehensive evaluation of the infective potential of Leptomonas seymouri, repeatedly isolated from kala-azar patients infected by Leishmania donovani in India and neighboring countries, and have tested the capacity of this monoxenous trypanosomatid to utilize the sand fly vectors permissive for Leishmania donovani. We concluded that despite several genetic adaptations it has developed, Leptomonas seymouri remains a predominantly monoxenous species not able to infect mammalian macrophages either alone or in co-infection with Leishmania. Under certain circumstances it is able to infect mammals, but probably only when the host is immunocompromised by infection with another pathogen, such as Leishmania donovani or HIV.
Vyšlo v časopise:
: Adaptations to the Dixenous Life Cycle Analyzed by Genome Sequencing, Transcriptome Profiling and Co-infection with. PLoS Pathog 11(8): e32767. doi:10.1371/journal.ppat.1005127
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1005127
Souhrn
In this work we performed a comprehensive evaluation of the infective potential of Leptomonas seymouri, repeatedly isolated from kala-azar patients infected by Leishmania donovani in India and neighboring countries, and have tested the capacity of this monoxenous trypanosomatid to utilize the sand fly vectors permissive for Leishmania donovani. We concluded that despite several genetic adaptations it has developed, Leptomonas seymouri remains a predominantly monoxenous species not able to infect mammalian macrophages either alone or in co-infection with Leishmania. Under certain circumstances it is able to infect mammals, but probably only when the host is immunocompromised by infection with another pathogen, such as Leishmania donovani or HIV.
Zdroje
1. Podlipaev SA (2001) The more insect trypanosomatids under study-the more diverse Trypanosomatidae appears. Int J Parasitol 31: 648–652. 11334958
2. Maslov DA, Votýpka J, Yurchenko V, Lukeš J (2013) Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol 29: 43–52. doi: 10.1016/j.pt.2012.11.001 23246083
3. Simpson AG, Stevens JR, Lukeš J (2006) The evolution and diversity of kinetoplastid flagellates. Trends Parasitol 22: 168–174. 16504583
4. Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V (2014) Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol 195: 115–122. doi: 10.1016/j.molbiopara.2014.05.007 24893339
5. Laveran A, Franchini G (1920) Infections experimentales de chiens et de cobayes a l'aide de cultures d'Herpetomonas d'insects. Bull Soc Pathol Exot 13: 569–576.
6. McGhee RB, Cosgrove WB (1980) Biology and physiology of the lower Trypanosomatidae. Microbiol Rev 44: 140–173. 6997722
7. Pacheco RS, Marzochi MC, Pires MQ, Brito CM, Madeira Md, et al. (1998) Parasite genotypically related to a monoxenous trypanosomatid of dog's flea causing opportunistic infection in an HIV positive patient. Mem Inst Oswaldo Cruz 93: 531–537. 9711346
8. Morio F, Reynes J, Dollet M, Pratlong F, Dedet JP, et al. (2008) Isolation of a protozoan parasite genetically related to the insect trypanosomatid Herpetomonas samuelpessoai from a human immunodeficiency virus-positive patient. J Clin Microbiol 46: 3845–3847. doi: 10.1128/JCM.01098-08 18832132
9. Ferreira MS, Borges AS (2002) Some aspects of protozoan infections in immunocompromised patients- a review. Mem Inst Oswaldo Cruz 97: 443–457. 12118272
10. Dedet JP, Pratlong F (2000) Leishmania, Trypanosoma and monoxenous trypanosomatids as emerging opportunistic agents. J Eukaryot Microbiol 47: 37–39. 10651294
11. Sundar S, Chakravarty J (2012) Recent advances in the diagnosis and treatment of kala-azar. Natl Med J India 25: 85–89. 22686715
12. Wallace FG, Hertig M (1968) Ultrastructural comparison of promastigote flagellates (leptomonads) of wild-caught Panamanian Phlebotomus. J Parasitol 54: 606–612. 5757733
13. Bhattarai NR, Das ML, Rijal S, van der Auwera G, Picado A, et al. (2009) Natural infection of Phlebotomus argentipes with Leishmania and other trypanosomatids in a visceral leishmaniasis endemic region of Nepal. Trans R Soc Trop Med Hyg 103: 1087–1092. doi: 10.1016/j.trstmh.2009.03.008 19345387
14. Ghosh S, Banerjee P, Sarkar A, Datta S, Chatterjee M (2012) Coinfection of Leptomonas seymouri and Leishmania donovani in Indian leishmaniasis. J Clin Microbiol 50: 2774–2778. doi: 10.1128/JCM.00966-12 22622439
15. Jirků M, Yurchenko VY, Lukeš J, Maslov DA (2012) New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J Eukaryot Microbiol 59: 537–547. doi: 10.1111/j.1550-7408.2012.00636.x 22845426
16. Wallace FG (1977) Leptomonas seymouri sp. n. from the cotton stainer Dysdercus suturellus. J Protozool 24: 483–484. 599500
17. Votýpka J, Klepetková H, Yurchenko VY, Horák A, Lukeš J, et al. (2012) Cosmopolitan distribution of a trypanosomatid Leptomonas pyrrhocoris. Protist 163: 616–631. doi: 10.1016/j.protis.2011.12.004 22341645
18. Conchon I, Campaner M, Sbravate C, Camargo EP (1989) Trypanosomatids, other than Phytomonas spp., isolated and cultured from fruit. J Protozool 36: 412–414.
19. Singh N, Chikara S, Sundar S (2013) SOLiD sequencing of genomes of clinical isolates of Leishmania donovani from India confirm Leptomonas co-infection and raise some key questions. PLOS One 8: e55738. doi: 10.1371/journal.pone.0055738 23418454
20. Srivastava P, Prajapati VK, Vanaerschot M, Van der Auwera G, Dujardin JC, et al. (2010) Detection of Leptomonas sp. parasites in clinical isolates of Kala-azar patients from India. Infect Genet Evol 10: 1145–1150. doi: 10.1016/j.meegid.2010.07.009 20633704
21. De Sa MF, De Sa CM, Veronese MA, Filho SA, Gander ES (1980) Morphologic and biochemical characterization of Crithidia brasiliensis sp. n. J Protozool 27: 253–257. 7005431
22. Roitman I, Mundim MH, De Azevedo HP, Kitajima EW (1977) Growth of Crithidia at high temperature: Crithidia hutneri sp. n. and Crithidia luciliae thermophila s. sp. n. J Protozool 24: 553–556.
23. McGhee RB (1959) The infection of avian embryos with Crithidia species and Leishmania tarentola. J Infect Dis 105: 18–25. 13665046
24. Kostygov AY, Grybchuk-Ieremenko A, Malysheva MN, Frolov AO, Yurchenko V (2014) Molecular revision of the genus Wallaceina. Protist 165: 594–604. doi: 10.1016/j.protis.2014.07.001 25113831
25. Maslov DA, Yurchenko VY, Jirků M, Lukeš J (2010) Two new species of trypanosomatid parasites isolated from Heteroptera in Costa Rica. J Eukaryot Microbiol 57: 177–188. doi: 10.1111/j.1550-7408.2009.00464.x 20113381
26. Yurchenko V, Lukeš J, Jirků M, Zeledon R, Maslov DA (2006) Leptomonas costaricensis sp. n. (Kinetoplastea: Trypanosomatidae), a member of the novel phylogenetic group of insect trypanosomatids closely related to the genus Leishmania. Parasitology 133: 537–546. 16834819
27. Yurchenko V, Votýpka J, Tesařová M, Klepetková H, Kraeva N, et al. (2014) Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. Folia Parasitol 61: 97–112. 24822316
28. Votýpka J, d'Avila-Levy CM, Grellier P, Maslov DA, Lukeš J, et al. (2015) New approaches to systematics of Trypanosomatidae: criteria for taxonomic (re)description. Trends Parasitol (in press).
29. Borghesan TC, Ferreira RC, Takata CS, Campaner M, Borda CC, et al. (2013) Molecular phylogenetic redefinition of Herpetomonas (Kinetoplastea, Trypanosomatidae), a genus of insect parasites associated with flies. Protist 164: 129–152. doi: 10.1016/j.protis.2012.06.001 22938923
30. El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, et al. (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309: 404–409. 16020724
31. Porcel BM, Denoeud F, Opperdoes FR, Noel B, Madoui M-A, et al. (2014) The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLOS Genet 10: e1004007. doi: 10.1371/journal.pgen.1004007 24516393
32. Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, et al. (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309: 436–442. 16020728
33. Mair G, Shi H, Li H, Djikeng A, Aviles HO, et al. (2000) A new twist in trypanosome RNA metabolism: cis-splicing of pre-mRNA. RNA 6: 163–169. 10688355
34. Alves JM, Klein CC, da Silva FM, Costa-Martins AG, Serrano MG, et al. (2013) Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evol Biol 13: 190. doi: 10.1186/1471-2148-13-190 24015778
35. Hannaert V, Bringaud F, Opperdoes FR, Michels PA (2003) Evolution of energy metabolism and its compartmentation in Kinetoplastida. Kinetoplastid Biol Dis 2: 11. 14613499
36. Opperdoes FR, Coombs GH (2007) Metabolism of Leishmania: proven and predicted. Trends Parasitol 23: 149–158. 17320480
37. Opperdoes FR, Szikora JP (2006) In silico prediction of the glycosomal enzymes of Leishmania major and trypanosomes. Mol Biochem Parasitol 147: 193–206. 16546274
38. Alves JM, Voegtly L, Matveyev AV, Lara AM, da Silva FM, et al. (2011) Identification and phylogenetic analysis of heme synthesis genes in trypanosomatids and their bacterial endosymbionts. PLoS One 6: e23518. doi: 10.1371/journal.pone.0023518 21853145
39. Kořený L, Lukeš J, Oborník M (2010) Evolution of the haem synthetic pathway in kinetoplastid flagellates: an essential pathway that is not essential after all? Int J Parasitol 40: 149–156. doi: 10.1016/j.ijpara.2009.11.007 19968994
40. Kořený L, Oborník M, Lukeš J (2013) Make it, take it, or leave it: heme metabolism of parasites. PLoS Pathog 9: e1003088. doi: 10.1371/journal.ppat.1003088 23349629
41. Bartholomeu DC, de Paiva RM, Mendes TA, DaRocha WD, Teixeira SM (2014) Unveiling the intracellular survival gene kit of trypanosomatid parasites. PLoS Pathog 10: e1004399. doi: 10.1371/journal.ppat.1004399 25474314
42. Maslov DA, Westenberger SJ, Xu X, Campbell DA, Sturm NR (2007) Discovery and barcoding by analysis of spliced leader RNA gene sequences of new isolates of Trypanosomatidae from Heteroptera in Costa Rica and Ecuador. J Eukaryot Microbiol 54: 57–65. 17300521
43. Ibrahim EA, Molyneux DH (1987) Pathogenicity of Crithidia fasciculata in the haemocoele of Glossina. Acta Trop 44: 13–22. 2884835
44. Schaub GA (1994) Pathogenicity of trypanosomatids on insects. Parasitol Today 10: 463–468. 15275511
45. Alcolea PJ, Alonso A, Garcia-Tabares F, Torano A, Larraga V (2014) An insight into the proteome of Crithidia fasciculata choanomastigotes as a comparative approach to axenic growth, peanut lectin agglutination and differentiation of Leishmania spp. promastigotes. PLoS One 9: e113837. doi: 10.1371/journal.pone.0113837 25503511
46. Mizbani A, Taslimi Y, Zahedifard F, Taheri T, Rafati S (2011) Effect of A2 gene on infectivity of the nonpathogenic parasite Leishmania tarentolae. Parasitol Res 109: 793–799. doi: 10.1007/s00436-011-2325-4 21442256
47. Gabernet-Castello C, Dacks JB, Field MC (2009) The single ENTH-domain protein of trypanosomes; endocytic functions and evolutionary relationship with epsin. Traffic 10: 894–911. doi: 10.1111/j.1600-0854.2009.00910.x 19416477
48. Bessat M, Knudsen G, Burlingame AL, Wang CC (2013) A minimal anaphase promoting complex/cyclosome (APC/C) in Trypanosoma brucei. PLoS One 8: e59258. doi: 10.1371/journal.pone.0059258 23533609
49. Lye LF, Owens K, Shi H, Murta SM, Vieira AC, et al. (2010) Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog 6: e1001161. doi: 10.1371/journal.ppat.1001161 21060810
50. Zangger H, Ronet C, Desponds C, Kuhlmann FM, Robinson J, et al. (2013) Detection of Leishmania RNA virus in Leishmania parasites. PLoS Negl Trop Dis 7: e2006. doi: 10.1371/journal.pntd.0002006 23326619
51. Ives A, Ronet C, Prevel F, Ruzzante G, Fuertes-Marraco S, et al. (2011) Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science 331: 775–778. doi: 10.1126/science.1199326 21311023
52. Votýpka J, Suková E, Kraeva N, Ishemgulova A, Duží I, et al. (2013) Diversity of trypanosomatids (Kinetoplastea: Trypanosomatidae) parasitizing fleas (Insecta: Siphonaptera) and description of a new genus Blechomonas gen. n. Protist 164: 763–781. doi: 10.1016/j.protis.2013.08.002 24113136
53. Weeks R, Aline RF Jr., Myler PJ, Stuart K (1992) LRV1 viral particles in Leishmania guyanensis contain double-stranded or single-stranded RNA. J Virol 66: 1389–1393. 1738198
54. Salinas G, Zamora M, Stuart K, Saravia N (1996) Leishmania RNA viruses in Leishmania of the Viannia subgenus. Am J Trop Med Hyg 54: 425–429. 8615459
55. Evans E, Rawicz W, Smith BA (2013) Back to the future: mechanics and thermodynamics of lipid biomembranes. Faraday Discuss 161: 591–611. 23805759
56. Xu W, Hsu FF, Baykal E, Huang J, Zhang K (2014) Sterol biosynthesis is required for heat resistance but not extracellular survival in Leishmania. PLoS Pathog 10: e1004427. doi: 10.1371/journal.ppat.1004427 25340392
57. Perez-Moreno G, Sealey-Cardona M, Rodrigues-Poveda C, Gelb MH, Ruiz-Perez LM, et al. (2012) Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei. Int J Parasitol 42: 975–989. doi: 10.1016/j.ijpara.2012.07.012 22964455
58. Grant KM, Dunion MH, Yardley V, Skaltsounis AL, Marko D, et al. (2004) Inhibitors of Leishmania mexicana CRK3 cyclin-dependent kinase: chemical library screen and antileishmanial activity. Antimicrob Agents Chemother 48: 3033–3042. 15273118
59. Bates PA, Rogers ME (2004) New insights into the developmental biology and transmission mechanisms of Leishmania. Curr Mol Med 4: 601–609. 15357211
60. Lee SH, Stephens JL, Englund PT (2007) A fatty-acid synthesis mechanism specialized for parasitism. Nat Rev Microbiol 5: 287–297. 17363967
61. Coombs GH, Craft JA, Hart DT (1982) A comparative study of Leishmania mexicana amastigotes and promastigotes. Enzyme activities and subcellular locations. Mol Biochem Parasitol 5: 199–211. 6211617
62. Goad LJ, Holz GG Jr., Beach DH (1984) Sterols of Leishmania species. Implications for biosynthesis. Mol Biochem Parasitol 10: 161–170. 6700638
63. Coppens I, Courtoy PJ (2000) The adaptative mechanisms of Trypanosoma brucei for sterol homeostasis in its different life-cycle environments. Annu Rev Microbiol 54: 129–156. 11018126
64. Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, et al. (2008) Retooling Leishmania metabolism: from sand fly gut to human macrophage. Faseb J 22: 590–602. 17884972
65. Saunders EC, Ng WW, Kloehn J, Chambers JM, Ng M, et al. (2014) Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism. PLoS Pathog 10: e1003888. doi: 10.1371/journal.ppat.1003888 24465208
66. Mottram JC, Coombs GH (1985) Leishmania mexicana: subcellular distribution of enzymes in amastigotes and promastigotes. Exp Parasitol 59: 265–274. 3158538
67. Zangger H, Hailu A, Desponds C, Lye LF, Akopyants NS, et al. (2014) Leishmania aethiopica field isolates bearing an endosymbiontic dsRNA virus induce pro-inflammatory cytokine response. PLoS Negl Trop Dis 8: e2836. doi: 10.1371/journal.pntd.0002836 24762979
68. Ronet C, Beverley SM, Fasel N (2011) Muco-cutaneous leishmaniasis in the New World: the ultimate subversion. Virulence 2: 547–552. doi: 10.4161/viru.2.6.17839 21971185
69. Hartley MA, Ronet C, Zangger H, Beverley SM, Fasel N (2012) Leishmania RNA virus: when the host pays the toll. Front Cell Infect Microbiol 2: 99. doi: 10.3389/fcimb.2012.00099 22919688
70. Soares MJ, Motta MC, de Souza W (1989) Bacterium-like endosymbiont and virus-like particles in the trypanosomatid Crithidia desouzai. Microbios Lett 41: 137–141.
71. Motta MC, de Souza W, Thiry M (2003) Immunocytochemical detection of DNA and RNA in endosymbiont-bearing trypanosomatids. FEMS Microbiol Lett 221: 17–23. 12694905
72. Ahuja K, Arora G, Khare P, Selvapandiyan A (2015) Selective elimination of Leptomonas from the in vitro co-culture with Leishmania. Parasitol Int 64: 1–5.
73. Alvar J, Aparicio P, Aseffa A, Den Boer M, Canavate C, et al. (2008) The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev 21: 334–359, table of contents. doi: 10.1128/CMR.00061-07 18400800
74. Svobodová M, Volf P, Votýpka J (2006) Experimental transmission of Leishmania tropica to hyraxes (Procavia capensis) by the bite of Phlebotomus arabicus. Microbes Infect 8: 1691–1694. 16815725
75. Yurchenko V, Lukeš J, Xu X, Maslov DA (2006) An integrated morphological and molecular approach to a new species description in the Trypanosomatidae: the case of Leptomonas podlipaevi n. sp., a parasite of Boisea rubrolineata (Hemiptera: Rhopalidae). J Eukaryot Microbiol 53: 103–111. 16579812
76. Yurchenko V, Lukeš J, Jirků M, Maslov DA (2009) Selective recovery of the cultivation-prone components from mixed trypanosomatid infections: a case of several novel species isolated from Neotropical Heteroptera. Int J Syst Evol Microbiol 59: 893–909. doi: 10.1099/ijs.0.001149-0 19329626
77. Huang S (2010) Statistical issues in subpopulation analysis of high content imaging data. J Comput Biol 17: 879–894. doi: 10.1089/cmb.2009.0071 20632869
78. Dollet M, Sturm NR, Campbell DA (2012) The internal transcribed spacer of ribosomal RNA genes in plant trypanosomes (Phytomonas spp.) resolves 10 groups. Infect Genet Evol 12: 299–308. doi: 10.1016/j.meegid.2011.11.010 22155359
79. Yurchenko V, Lukeš J, Tesařová M, Jirků M, Maslov DA (2008) Morphological discordance of the new trypanosomatid species phylogenetically associated with the genus Crithidia. Protist 159: 99–114. 17931968
80. Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, et al. (2014) Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist 165: 825–838. doi: 10.1016/j.protis.2014.09.002 25460233
81. Stanke M, Keller O, Gunduz I, Hayes A, Waack S, et al. (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34: W435–439. 16845043
82. Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, et al. (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38: D457–462. doi: 10.1093/nar/gkp851 19843604
83. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33: W686–689. 15980563
84. Aurrecoechea C, Barreto A, Brestelli J, Brunk BP, Cade S, et al. (2013) EuPathDB: the eukaryotic pathogen database. Nucleic Acids Res 41: D684–691. doi: 10.1093/nar/gks1113 23175615
85. Li L, Stoeckert CJ Jr., Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13: 2178–2189. 12952885
86. Si Y, Liu P (2013) An optimal test with maximum average power while controlling FDR with application to RNA-seq data. Biometrics 69: 594–605. doi: 10.1111/biom.12036 23889143
87. Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, et al. (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36: 3420–3435. doi: 10.1093/nar/gkn176 18445632
88. Beiting DP, Peixoto L, Akopyants NS, Beverley SM, Wherry EJ, et al. (2014) Differential induction of TLR3-dependent innate immune signaling by closely related parasite species. PLoS One 9: e88398. doi: 10.1371/journal.pone.0088398 24505488
89. Kelly S, Reed J, Kramer S, Ellis L, Webb H, et al. (2007) Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol Biochem Parasitol 154: 103–109. 17512617
90. Kushnir S, Gase K, Breitling R, Alexandrov K (2005) Development of an inducible protein expression system based on the protozoan host Leishmania tarentolae. Protein Expres Purif 42: 37–46.
91. Kraeva N, Ishemgulova A, Lukeš J, Yurchenko V (2014) Tetracycline-inducible gene expression system in Leishmania mexicana. Mol Biochem Parasitol (in press).
92. Volf P, Volfová V (2011) Establishment and maintenance of sand fly colonies. J Vector Ecol 36 Suppl 1: S1–9.
93. Myšková J, Votýpka J, Volf P (2008) Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomol 45: 133–138. 18283954
94. Rogers M, Kropf P, Choi BS, Dillon R, Podinovskaia M, et al. (2009) Proteophosophoglycans regurgitated by Leishmania-infected sand flies target the L-arginine metabolism of host macrophages to promote parasite survival. PLoS Pathog 5: e1000555. doi: 10.1371/journal.ppat.1000555 19696894
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 8
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques
- Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria
- Are Human Intestinal Eukaryotes Beneficial or Commensals?
- Illuminating Targets of Bacterial Secretion