Extracellular Adenosine Protects against Lung Infection by Regulating Pulmonary Neutrophil Recruitment
Despite the presence of vaccines and antibiotic therapies, invasive Streptococcus pneumoniae (pneumococcus) infections, such as pneumonia, bacteremia and meningitis, remain a leading cause of mortality and morbidity worldwide. Understanding the host factors that influence the outcome of S. pneumoniae infection will allow us to design better therapies. Here, we elucidate the role of rapidly responding innate immune cells termed neutrophils, or PMNs (polymorphonuclear leukocytes), whose role in S. pneumoniae infection has long been controversial. We found that PMNs are initially required for controlling bacterial numbers, but their extended presence in the lungs leads to significant damage and poor control of infection. The signals that control the movement of PMNs into the infected lungs are not well understood. Here, we identified extracellular adenosine (EAD), a molecule produced by the host in response to cellular damage, as important in limiting PMN movement into the lungs upon pneumococcal challenge. Importantly, EAD-mediated control of PMNs was crucial for fighting lung infection by S. pneumoniae. This study may lead to the potential use of clinically available adenosine-based therapies to combat pneumococcal pneumonia in the future.
Vyšlo v časopise:
Extracellular Adenosine Protects against Lung Infection by Regulating Pulmonary Neutrophil Recruitment. PLoS Pathog 11(8): e32767. doi:10.1371/journal.ppat.1005126
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1005126
Souhrn
Despite the presence of vaccines and antibiotic therapies, invasive Streptococcus pneumoniae (pneumococcus) infections, such as pneumonia, bacteremia and meningitis, remain a leading cause of mortality and morbidity worldwide. Understanding the host factors that influence the outcome of S. pneumoniae infection will allow us to design better therapies. Here, we elucidate the role of rapidly responding innate immune cells termed neutrophils, or PMNs (polymorphonuclear leukocytes), whose role in S. pneumoniae infection has long been controversial. We found that PMNs are initially required for controlling bacterial numbers, but their extended presence in the lungs leads to significant damage and poor control of infection. The signals that control the movement of PMNs into the infected lungs are not well understood. Here, we identified extracellular adenosine (EAD), a molecule produced by the host in response to cellular damage, as important in limiting PMN movement into the lungs upon pneumococcal challenge. Importantly, EAD-mediated control of PMNs was crucial for fighting lung infection by S. pneumoniae. This study may lead to the potential use of clinically available adenosine-based therapies to combat pneumococcal pneumonia in the future.
Zdroje
1. Kadioglu A, Weiser JN, Paton JC, Andrew PW (2008) The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6: 288–301. doi: 10.1038/nrmicro1871 18340341
2. Chong CP, Street PR (2008) Pneumonia in the elderly: a review of the epidemiology, pathogenesis, microbiology, and clinical features. South Med J 101: 1141–1145; quiz 1132, 1179. doi: 10.1097/SMJ.0b013e318181d5b5 19088525
3. Fruchtman SM, Gombert ME, Lyons HA (1983) Adult respiratory distress syndrome as a cause of death in pneumococcal pneumonia. Report of ten cases. Chest 83: 598–601. 6831945
4. Sun K, Metzger DW (2014) Influenza infection suppresses NADPH oxidase-dependent phagocytic bacterial clearance and enhances susceptibility to secondary methicillin-resistant Staphylococcus aureus infection. J Immunol 192: 3301–3307. doi: 10.4049/jimmunol.1303049 24563256
5. Marks LR, Davidson BA, Knight PR, Hakansson AP (2013) Interkingdom signaling induces Streptococcus pneumoniae biofilm dispersion and transition from asymptomatic colonization to disease. MBio 4.
6. Diavatopoulos DA, Short KR, Price JT, Wilksch JJ, Brown LE, et al. (2010) Influenza A virus facilitates Streptococcus pneumoniae transmission and disease. FASEB J 24: 1789–1798. doi: 10.1096/fj.09-146779 20097876
7. Hinojosa E, Boyd AR, Orihuela CJ (2009) Age-associated inflammation and toll-like receptor dysfunction prime the lungs for pneumococcal pneumonia. J Infect Dis 200: 546–554. doi: 10.1086/600870 19586419
8. Bou Ghanem EN CS, Du X, Wu D, Camilli A, Leong JM, Meydani SN The α-Tocopherol Form of Vitamin E Reverses Age-Associated Susceptibility to Streptococcus pneumoniae Lung Infection by Modulating Pulmonary Neutrophil Recruitment. [published online head of print December 15, 2014] J immunol doi: 10.4049/jimmunol1402401
9. Bhowmick R, Tin Maung NH, Hurley BP, Ghanem EB, Gronert K, et al. (2013) Systemic disease during Streptococcus pneumoniae acute lung infection requires 12-lipoxygenase-dependent inflammation. J Immunol 191: 5115–5123. doi: 10.4049/jimmunol.1300522 24089193
10. Doerschuk CM, Markos J, Coxson HO, English D, Hogg JC (1994) Quantitation of neutrophil migration in acute bacterial pneumonia in rabbits. J Appl Physiol 77: 2593–2599. 7896596
11. Rolston KV (2001) The spectrum of pulmonary infections in cancer patients. Curr Opin Oncol 13: 218–223. 11429477
12. Garvy BA, Harmsen AG (1996) The importance of neutrophils in resistance to pneumococcal pneumonia in adult and neonatal mice. Inflammation 20: 499–512. 8894714
13. Hahn I, Klaus A, Janze AK, Steinwede K, Ding N, et al. (2011) Cathepsin G and neutrophil elastase play critical and nonredundant roles in lung-protective immunity against Streptococcus pneumoniae in mice. Infect Immun 79: 4893–4901. doi: 10.1128/IAI.05593-11 21911460
14. Nieminen J, St-Pierre C, Bhaumik P, Poirier F, Sato S (2008) Role of galectin-3 in leukocyte recruitment in a murine model of lung infection by Streptococcus pneumoniae. J Immunol 180: 2466–2473. 18250456
15. Kadioglu A, De Filippo K, Bangert M, Fernandes VE, Richards L, et al. (2011) The integrins Mac-1 and alpha4beta1 perform crucial roles in neutrophil and T cell recruitment to lungs during Streptococcus pneumoniae infection. J Immunol 186: 5907–5915. doi: 10.4049/jimmunol.1001533 21460207
16. Boyd AR, Shivshankar P, Jiang S, Berton MT, Orihuela CJ (2012) Age-related defects in TLR2 signaling diminish the cytokine response by alveolar macrophages during murine pneumococcal pneumonia. Exp Gerontol 47: 507–518. doi: 10.1016/j.exger.2012.04.004 22548913
17. Neill DR, Fernandes VE, Wisby L, Haynes AR, Ferreira DM, et al. (2012) T regulatory cells control susceptibility to invasive pneumococcal pneumonia in mice. PLoS Pathog 8: e1002660. doi: 10.1371/journal.ppat.1002660 22563306
18. Narayana Moorthy A, Narasaraju T, Rai P, Perumalsamy R, Tan KB, et al. (2013) In vivo and in vitro studies on the roles of neutrophil extracellular traps during secondary pneumococcal pneumonia after primary pulmonary influenza infection. Front Immunol 4: 56. doi: 10.3389/fimmu.2013.00056 23467809
19. Craig A, Mai J, Cai S, Jeyaseelan S (2009) Neutrophil recruitment to the lungs during bacterial pneumonia. Infect Immun 77: 568–575. doi: 10.1128/IAI.00832-08 19015252
20. Herbold W, Maus R, Hahn I, Ding N, Srivastava M, et al. (2010) Importance of CXC chemokine receptor 2 in alveolar neutrophil and exudate macrophage recruitment in response to pneumococcal lung infection. Infect Immun 78: 2620–2630. doi: 10.1128/IAI.01169-09 20368349
21. Factor P, Mutlu GM, Chen L, Mohameed J, Akhmedov AT, et al. (2007) Adenosine regulation of alveolar fluid clearance. Proc Natl Acad Sci U S A 104: 4083–4088. 17360481
22. Barletta KE, Ley K, Mehrad B (2012) Regulation of neutrophil function by adenosine. Arterioscler Thromb Vasc Biol 32: 856–864. doi: 10.1161/ATVBAHA.111.226845 22423037
23. Hasko G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7: 759–770. doi: 10.1038/nrd2638 18758473
24. Thompson LF, Eltzschig HK, Ibla JC, Van De Wiele CJ, Resta R, et al. (2004) Crucial role for ecto-5'-nucleotidase (CD73) in vascular leakage during hypoxia. J Exp Med 200: 1395–1405. 15583013
25. Eckle T, Fullbier L, Wehrmann M, Khoury J, Mittelbronn M, et al. (2007) Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury. J Immunol 178: 8127–8137. 17548651
26. Eltzschig HK, Thompson LF, Karhausen J, Cotta RJ, Ibla JC, et al. (2004) Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 104: 3986–3992. 15319286
27. Hasko G, Csoka B, Koscso B, Chandra R, Pacher P, et al. (2011) Ecto-5'-nucleotidase (CD73) decreases mortality and organ injury in sepsis. J Immunol 187: 4256–4267. doi: 10.4049/jimmunol.1003379 21918191
28. Barletta KE, Cagnina RE, Burdick MD, Linden J, Mehrad B (2012) Adenosine A(2B) receptor deficiency promotes host defenses against gram-negative bacterial pneumonia. Am J Respir Crit Care Med 186: 1044–1050. doi: 10.1164/rccm.201204-0622OC 22997203
29. Aeffner F, Woods PS, Davis IC (2014) Activation of A1-adenosine receptors promotes leukocyte recruitment to the lung and attenuates acute lung injury in mice infected with influenza A/WSN/33 (H1N1) virus. J Virol 88: 10214–10227. doi: 10.1128/JVI.01068-14 24965449
30. van Opijnen T, Camilli A (2012) A fine scale phenotype-genotype virulence map of a bacterial pathogen. Genome Res 22: 2541–2551. doi: 10.1101/gr.137430.112 22826510
31. Kumar V, Sharma A (2009) Adenosine: an endogenous modulator of innate immune system with therapeutic potential. Eur J Pharmacol 616: 7–15. doi: 10.1016/j.ejphar.2009.05.005 19464286
32. Bessodes M, Bastian G, Abushanab E, Panzica RP, Berman SF, et al. (1982) Effect of chirality in erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) on adenosine deaminase inhibition. Biochem Pharmacol 31: 879–882. 7082355
33. Lambe CU, Nelson DJ (1982) Pharmacokinetics of inhibition of adenosine deaminase by erythro-9-(2-hydroxy-3-nonyl)adenine in CBA mice. Biochem Pharmacol 31: 535–539. 7066021
34. Mahamed DA, Mills JH, Egan CE, Denkers EY, Bynoe MS (2012) CD73-generated adenosine facilitates Toxoplasma gondii differentiation to long-lived tissue cysts in the central nervous system. Proc Natl Acad Sci U S A 109: 16312–16317. doi: 10.1073/pnas.1205589109 22988118
35. Podzuweit T, Nennstiel P, Muller A (1995) Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine. Cell Signal 7: 733–738. 8519602
36. Gingles NA, Alexander JE, Kadioglu A, Andrew PW, Kerr A, et al. (2001) Role of genetic resistance in invasive pneumococcal infection: identification and study of susceptibility and resistance in inbred mouse strains. Infect Immun 69: 426–434. 11119534
37. Williams M, Francis J, Ghai G, Braunwalder A, Psychoyos S, et al. (1987) Biochemical characterization of the triazoloquinazoline, CGS 15943, a novel, non-xanthine adenosine antagonist. J Pharmacol Exp Ther 241: 415–420. 2883298
38. Klotz KN (2000) Adenosine receptors and their ligands. Naunyn Schmiedebergs Arch Pharmacol 362: 382–391. 11111832
39. Moreland JG, Bailey G (2006) Neutrophil transendothelial migration in vitro to Streptococcus pneumoniae is pneumolysin dependent. Am J Physiol Lung Cell Mol Physiol 290: L833–840. 16339781
40. Preston JA, Beagley KW, Gibson PG, Hansbro PM (2004) Genetic background affects susceptibility in nonfatal pneumococcal bronchopneumonia. Eur Respir J 23: 224–231. 14979496
41. Marks M, Burns T, Abadi M, Seyoum B, Thornton J, et al. (2007) Influence of neutropenia on the course of serotype 8 pneumococcal pneumonia in mice. Infect Immun 75: 1586–1597. 17296760
42. Standish AJ, Weiser JN (2009) Human neutrophils kill Streptococcus pneumoniae via serine proteases. J Immunol 183: 2602–2609. doi: 10.4049/jimmunol.0900688 19620298
43. Lysenko ES, Clarke TB, Shchepetov M, Ratner AJ, Roper DI, et al. (2007) Nod1 signaling overcomes resistance of S. pneumoniae to opsonophagocytic killing. PLoS Pathog 3: e118. 17722978
44. Krone CL, Trzcinski K, Zborowski T, Sanders EA, Bogaert D (2013) Impaired innate mucosal immunity in aged mice permits prolonged Streptococcus pneumoniae colonization. Infect Immun 81: 4615–4625. doi: 10.1128/IAI.00618-13 24082075
45. Burns T, Abadi M, Pirofski LA (2005) Modulation of the lung inflammatory response to serotype 8 pneumococcal infection by a human immunoglobulin m monoclonal antibody to serotype 8 capsular polysaccharide. Infect Immun 73: 4530–4538. 16040964
46. Schingnitz U, Hartmann K, Macmanus CF, Eckle T, Zug S, et al. (2010) Signaling through the A2B adenosine receptor dampens endotoxin-induced acute lung injury. J Immunol 184: 5271–5279. doi: 10.4049/jimmunol.0903035 20348420
47. Yang D, Zhang Y, Nguyen HG, Koupenova M, Chauhan AK, et al. (2006) The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J Clin Invest 116: 1913–1923. 16823489
48. Ngamsri KC, Wagner R, Vollmer I, Stark S, Reutershan J (2010) Adenosine receptor A1 regulates polymorphonuclear cell trafficking and microvascular permeability in lipopolysaccharide-induced lung injury. J Immunol 185: 4374–4384. doi: 10.4049/jimmunol.1000433 20729330
49. Sun CX, Young HW, Molina JG, Volmer JB, Schnermann J, et al. (2005) A protective role for the A1 adenosine receptor in adenosine-dependent pulmonary injury. J Clin Invest 115: 35–43. 15630442
50. Fernandez LG, Sharma AK, LaPar DJ, Kron IL, Laubach VE (2013) Adenosine A1 receptor activation attenuates lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 145: 1654–1659. doi: 10.1016/j.jtcvs.2013.01.006 23398646
51. Konrad FM, Witte E, Vollmer I, Stark S, Reutershan J (2012) Adenosine receptor A2b on hematopoietic cells mediates LPS-induced migration of PMNs into the lung interstitium. Am J Physiol Lung Cell Mol Physiol 303: L425–438. doi: 10.1152/ajplung.00387.2011 22707616
52. Bouma MG, van den Wildenberg FA, Buurman WA (1996) Adenosine inhibits cytokine release and expression of adhesion molecules by activated human endothelial cells. Am J Physiol 270: C522–529. 8779915
53. Wollner A, Wollner S, Smith JB (1993) Acting via A2 receptors, adenosine inhibits the upregulation of Mac-1 (Cd11b/CD18) expression on FMLP-stimulated neutrophils. Am J Respir Cell Mol Biol 9: 179–185. 8393328
54. Thammavongsa V, Kern JW, Missiakas DM, Schneewind O (2009) Staphylococcus aureus synthesizes adenosine to escape host immune responses. J Exp Med 206: 2417–2427. doi: 10.1084/jem.20090097 19808256
55. Liu P, Pian Y, Li X, Liu R, Xie W, et al. (2014) Streptococcus suis adenosine synthase functions as an effector in evasion of PMN-mediated innate immunit. J Infect Dis 210: 35–45. 24446521
56. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, et al. (2010) Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467: 426–429. doi: 10.1038/nature09415 20864996
57. Shelburne SA, Davenport MT, Keith DB, Musser JM (2008) The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci. Trends Microbiol 16: 318–325. doi: 10.1016/j.tim.2008.04.002 18508271
58. Burnaugh AM, Frantz LJ, King SJ (2008) Growth of Streptococcus pneumoniae on human glycoconjugates is dependent upon the sequential activity of bacterial exoglycosidases. J Bacteriol 190: 221–230. 17981977
59. Muller I, Munder M, Kropf P, Hansch GM (2009) Polymorphonuclear neutrophils and T lymphocytes: strange bedfellows or brothers in arms? Trends Immunol 30: 522–530. doi: 10.1016/j.it.2009.07.007 19775938
60. Soehnlein O, Weber C, Lindbom L (2009) Neutrophil granule proteins tune monocytic cell function. Trends Immunol 30: 538–546. doi: 10.1016/j.it.2009.06.006 19699683
61. Cohen HB, Briggs KT, Marino JP, Ravid K, Robson SC, et al. (2013) TLR stimulation initiates a CD39-based autoregulatory mechanism that limits macrophage inflammatory responses. Blood 122: 1935–1945. doi: 10.1182/blood-2013-04-496216 23908469
62. Ohta A, Kini R, Ohta A, Subramanian M, Madasu M, et al. (2012) The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol 3: 190. doi: 10.3389/fimmu.2012.00190 22783261
63. Romio M, Reinbeck B, Bongardt S, Huls S, Burghoff S, et al. (2011) Extracellular purine metabolism and signaling of CD73-derived adenosine in murine Treg and Teff cells. Am J Physiol Cell Physiol 301: C530–539. doi: 10.1152/ajpcell.00385.2010 21593451
64. Dockrell DH, Marriott HM, Prince LR, Ridger VC, Ince PG, et al. (2003) Alveolar macrophage apoptosis contributes to pneumococcal clearance in a resolving model of pulmonary infection. J Immunol 171: 5380–5388. 14607941
65. Lionakis MS, Fischer BG, Lim JK, Swamydas M, Wan W, et al. (2012) Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis. PLoS Pathog 8: e1002865. doi: 10.1371/journal.ppat.1002865 22916017
66. Liang D, Zuo A, Shao H, Chen M, Kaplan HJ, et al. (2014) Anti-inflammatory or proinflammatory effect of an adenosine receptor agonist on the th17 autoimmune response is inflammatory environment-dependent. J Immunol 193: 5498–5505. doi: 10.4049/jimmunol.1401959 25367119
67. McCormick BA, Hofman PM, Kim J, Carnes DK, Miller SI, et al. (1995) Surface attachment of Salmonella typhimurium to intestinal epithelia imprints the subepithelial matrix with gradients chemotactic for neutrophils. J Cell Biol 131: 1599–1608. 8522615
68. Alcaide P, Newton G, Auerbach S, Sehrawat S, Mayadas TN, et al. (2008) p120-Catenin regulates leukocyte transmigration through an effect on VE-cadherin phosphorylation. Blood 112: 2770–2779. doi: 10.1182/blood-2008-03-147181 18641366
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 8
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques
- Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria
- Are Human Intestinal Eukaryotes Beneficial or Commensals?
- Illuminating Targets of Bacterial Secretion