Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection
The mucosa-associated invariant T (MAIT) cells recognize antigens that are byproducts of the riboflavin biosynthesis pathway shared by many microbes. These antigens are presented by the MHC class I-like MR1 molecules and trigger rapid activation of MAIT cells in an innate-like fashion with deployment of effector mechanisms including cytokine production and cytolysis. Here, we investigated the MAIT cell response to bacteria in humans infected with HIV-1, and possible means to restore functionality to these cells. MAIT cell dysfunction in HIV-infected patients included an inability to express components of the cytolytic effector machinery. Impairment of the MAIT cell population involved the loss of expression of the transcription factors T-bet and Eomes. Interestingly, IL-7 had strong effects on MAIT cells, including the antigen-independent arming of cytolytic function and enhanced sensitivity for low levels of bacteria. In HIV-infected patients, plasma IL-7 levels were positively associated with the size of the MAIT cell population, and IL-7 could rescue their function. These findings indicate that MAIT cell impairment in HIV-1 infection is broad-based, includes loss of critical transcription factors, and loss of cytolytic function. Furthermore, the data support the notion that IL-7 is a strong candidate for immunotherapy in diseases associated with MAIT cell loss.
Vyšlo v časopise:
Arming of MAIT Cell Cytolytic Antimicrobial Activity Is Induced by IL-7 and Defective in HIV-1 Infection. PLoS Pathog 11(8): e32767. doi:10.1371/journal.ppat.1005072
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1005072
Souhrn
The mucosa-associated invariant T (MAIT) cells recognize antigens that are byproducts of the riboflavin biosynthesis pathway shared by many microbes. These antigens are presented by the MHC class I-like MR1 molecules and trigger rapid activation of MAIT cells in an innate-like fashion with deployment of effector mechanisms including cytokine production and cytolysis. Here, we investigated the MAIT cell response to bacteria in humans infected with HIV-1, and possible means to restore functionality to these cells. MAIT cell dysfunction in HIV-infected patients included an inability to express components of the cytolytic effector machinery. Impairment of the MAIT cell population involved the loss of expression of the transcription factors T-bet and Eomes. Interestingly, IL-7 had strong effects on MAIT cells, including the antigen-independent arming of cytolytic function and enhanced sensitivity for low levels of bacteria. In HIV-infected patients, plasma IL-7 levels were positively associated with the size of the MAIT cell population, and IL-7 could rescue their function. These findings indicate that MAIT cell impairment in HIV-1 infection is broad-based, includes loss of critical transcription factors, and loss of cytolytic function. Furthermore, the data support the notion that IL-7 is a strong candidate for immunotherapy in diseases associated with MAIT cell loss.
Zdroje
1. Le Bourhis L, Mburu YK, Lantz O. MAIT cells, surveyors of a new class of antigen: development and functions. Curr Opin Immunol. 2013;25(2):174–80. Epub 2013/02/21. doi: S0952-7915(13)00006-X [pii] doi: 10.1016/j.coi.2013.01.005 23422835.
2. Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1 (vol 422, pg 164, 2003). Nature. 2003;423(6943):1018-. doi: 10.1038/Nature01700 ISI:000183753900057.
3. Dusseaux M, Martin E, Serriari N, Peguillet I, Premel V, Louis D, et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood. 2011;117(4):1250–9. Epub 2010/11/19. doi: blood-2010-08-303339 [pii] doi: 10.1182/blood-2010-08-303339 21084709.
4. Huang S, Martin E, Kim S, Yu L, Soudais C, Fremont DH, et al. MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution. Proc Natl Acad Sci U S A. 2009;106(20):8290–5. Epub 2009/05/07. doi: 0903196106 [pii] doi: 10.1073/pnas.0903196106 19416870; PubMed Central PMCID: PMC2688861.
5. Reantragoon R, Kjer-Nielsen L, Patel O, Chen Z, Illing PT, Bhati M, et al. Structural insight into MR1-mediated recognition of the mucosal associated invariant T cell receptor. J Exp Med. 2012;209(4):761–74. Epub 2012/03/14. doi: jem.20112095 [pii] doi: 10.1084/jem.20112095 22412157; PubMed Central PMCID: PMC3328369.
6. Lepore M, Kalinichenko A, Colone A, Paleja B, Singhal A, Tschumi A, et al. Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRbeta repertoire. Nature communications. 2014;5:3866. doi: 10.1038/ncomms4866 24832684.
7. Beaulieu AM, Sant'Angelo DB. The BTB-ZF family of transcription factors: key regulators of lineage commitment and effector function development in the immune system. J Immunol. 2011;187(6):2841–7. Epub 2011/09/09. doi: 187/6/2841 [pii] doi: 10.4049/jimmunol.1004006 21900183; PubMed Central PMCID: PMC3170133.
8. Le Bourhis L, Martin E, Peguillet I, Guihot A, Froux N, Core M, et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol. 2010;11(8):701–8. Epub 2010/06/29. doi: ni.1890 [pii] doi: 10.1038/ni.1890 20581831.
9. Martin E, Treiner E, Duban L, Guerri L, Laude H, Toly C, et al. Stepwise development of MAIT cells in mouse and human. PLoS Biol. 2009;7(3):e54. Epub 2009/03/13. doi: 08-PLBI-RA-3994 [pii] doi: 10.1371/journal.pbio.1000054 19278296; PubMed Central PMCID: PMC2653554.
10. Walker LJ, Kang YH, Smith MO, Tharmalingham H, Ramamurthy N, Fleming VM, et al. Human MAIT and CD8alphaalpha cells develop from a pool of type-17 precommitted CD8+ T cells. Blood. 2012;119(2):422–33. Epub 2011/11/17. doi: blood-2011-05-353789 [pii] doi: 10.1182/blood-2011-05-353789 22086415; PubMed Central PMCID: PMC3257008.
11. Leeansyah E, Ganesh A, Quigley MF, Sonnerborg A, Andersson J, Hunt PW, et al. Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection. Blood. 2013;121(7):1124–35. Epub 2012/12/18. doi: blood-2012-07-445429 [pii] doi: 10.1182/blood-2012-07-445429 23243281.
12. Leeansyah E, Loh L, Nixon DF, Sandberg JK. Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development. Nature communications. 2014;5:3143. doi: 10.1038/ncomms4143 24452018; PubMed Central PMCID: PMC3916833.
13. Riegert P, Wanner V, Bahram S. Genomics, isoforms, expression, and phylogeny of the MHC class I-related MR1 gene. J Immunol. 1998;161(8):4066–77. Epub 1998/10/21. 9780177.
14. Tsukamoto K, Deakin JE, Graves JA, Hashimoto K. Exceptionally high conservation of the MHC class I-related gene, MR1, among mammals. Immunogenetics. 2013;65(2):115–24. Epub 2012/12/12. doi: 10.1007/s00251-012-0666-5 23229473.
15. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature. 2012;491(7426):717–23. Epub 2012/10/12. doi: nature11605 [pii] doi: 10.1038/nature11605 23051753.
16. Patel O, Kjer-Nielsen L, Le Nours J, Eckle SB, Birkinshaw R, Beddoe T, et al. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nature communications. 2013;4:2142. doi: 10.1038/ncomms3142 23846752.
17. Corbett AJ, Eckle SB, Birkinshaw RW, Liu L, Patel O, Mahony J, et al. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature. 2014;509(7500):361–5. doi: 10.1038/nature13160 24695216.
18. Le Bourhis L, Dusseaux M, Bohineust A, Bessoles S, Martin E, Premel V, et al. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog. 2013;9(10):e1003681. doi: 10.1371/journal.ppat.1003681 24130485; PubMed Central PMCID: PMC3795036.
19. Kurioka A, Ussher JE, Cosgrove C, Clough C, Fergusson JR, Smith K, et al. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol. 2014. doi: 10.1038/mi.2014.81 25269706.
20. Meierovics A, Yankelevich WJ, Cowley SC. MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. Proc Natl Acad Sci U S A. 2013. doi: 10.1073/pnas.1302799110 23898209.
21. Cosgrove C, Ussher JE, Rauch A, Gartner K, Kurioka A, Huhn MH, et al. Early and nonreversible decrease of CD161++/MAIT cells in HIV infection. Blood. 2013;121(6):951–61. Epub 2012/12/21. doi: blood-2012-06-436436 [pii] doi: 10.1182/blood-2012-06-436436 23255555; PubMed Central PMCID: PMC3567342.
22. Ussher JE, Bilton M, Attwod E, Shadwell J, Richardson R, de Lara C, et al. CD161 CD8 T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur J Immunol. 2013. doi: 10.1002/eji.201343509 24019201.
23. Jo J, Tan AT, Ussher JE, Sandalova E, Tang XZ, Tan-Garcia A, et al. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver. PLoS Pathog. 2014;10(6):e1004210. doi: 10.1371/journal.ppat.1004210 24967632; PubMed Central PMCID: PMC4072808.
24. Buchacz K, Baker RK, Palella FJ Jr., Chmiel JS, Lichtenstein KA, Novak RM, et al. AIDS-defining opportunistic illnesses in US patients, 1994–2007: a cohort study. AIDS. 2010;24(10):1549–59. doi: 10.1097/QAD.0b013e32833a3967 20502317.
25. Perbost I, Malafronte B, Pradier C, Santo LD, Dunais B, Counillon E, et al. In the era of highly active antiretroviral therapy, why are HIV-infected patients still admitted to hospital for an inaugural opportunistic infection? HIV medicine. 2005;6(4):232–9. doi: 10.1111/j.1468-1293.2005.00282.x 16011527.
26. Sabin CA, Smith CJ, Gumley H, Murphy G, Lampe FC, Phillips AN, et al. Late presenters in the era of highly active antiretroviral therapy: uptake of and responses to antiretroviral therapy. AIDS. 2004;18(16):2145–51. 15577647.
27. Huson MA, Grobusch MP, van der Poll T. The effect of HIV infection on the host response to bacterial sepsis. Lancet Infect Dis. 2014. doi: 10.1016/S1473-3099(14)70917-X 25459220.
28. Sandberg JK, Dias J, Shacklett BL, Leeansyah E. Will loss of your MAITs weaken your HAART? AIDS. 2013. Epub 2013/04/19. doi: 10.1097/QAD.0b013e3283620726 23595154.
29. Wong EB, Akilimali NA, Govender P, Sullivan ZA, Cosgrove C, Pillay M, et al. Low levels of peripheral CD161++CD8+ mucosal associated invariant T (MAIT) cells are found in HIV and HIV/TB co-infection. PLoS One. 2013;8(12):e83474. doi: 10.1371/journal.pone.0083474 24391773; PubMed Central PMCID: PMC3877057.
30. Eberhard JM, Hartjen P, Kummer S, Schmidt RE, Bockhorn M, Lehmann C, et al. CD161+ MAIT Cells Are Severely Reduced in Peripheral Blood and Lymph Nodes of HIV-Infected Individuals Independently of Disease Progression. PLoS One. 2014;9(11):e111323. doi: 10.1371/journal.pone.0111323 25369333; PubMed Central PMCID: PMC4219715.
31. Fernandez CS, Amarasena T, Kelleher AD, Rossjohn J, McCluskey J, Godfrey DI, et al. MAIT cells are depleted early but retain functional cytokine expression in HIV infection. Immunol Cell Biol. 2014. doi: 10.1038/icb.2014.91 25348935.
32. Chua WJ, Truscott SM, Eickhoff CS, Blazevic A, Hoft DF, Hansen TH. Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection. Infect Immun. 2012;80(9):3256–67. Epub 2012/07/11. doi: IAI.00279-12 [pii] doi: 10.1128/IAI.00279-12 22778103; PubMed Central PMCID: PMC3418730.
33. Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol. 2010;8(6):e1000407. Epub 2010/07/09. doi: 10.1371/journal.pbio.1000407 20613858; PubMed Central PMCID: PMC2893946.
34. Georgel P, Radosavljevic M, Macquin C, Bahram S. The non-conventional MHC class I MR1 molecule controls infection by Klebsiella pneumoniae in mice. Mol Immunol. 2011;48(5):769–75. Epub 2010/12/31. doi: S0161-5890(10)00659-0 [pii] doi: 10.1016/j.molimm.2010.12.002 21190736.
35. Grimaldi D, Le Bourhis L, Sauneuf B, Dechartres A, Rousseau C, Ouaaz F, et al. Specific MAIT cell behaviour among innate-like T lymphocytes in critically ill patients with severe infections. Intensive care medicine. 2014;40(2):192–201. doi: 10.1007/s00134-013-3163-x 24322275.
36. Carrette F, Surh CD. IL-7 signaling and CD127 receptor regulation in the control of T cell homeostasis. Semin Immunol. 2012;24(3):209–17. doi: 10.1016/j.smim.2012.04.010 22551764; PubMed Central PMCID: PMC3367861.
37. Carcelain G, Autran B. Immune interventions in HIV infection. Immunol Rev. 2013;254(1):355–71. doi: 10.1111/imr.12083 23772631.
38. Tang XZ, Jo J, Tan AT, Sandalova E, Chia A, Tan KC, et al. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J Immunol. 2013;190(7):3142–52. Epub 2013/03/01. doi: jimmunol.1203218 [pii] doi: 10.4049/jimmunol.1203218 23447689.
39. Willing A, Leach OA, Ufer F, Attfield KE, Steinbach K, Kursawe N, et al. CD8(+) MAIT cells infiltrate into the CNS and alterations in their blood frequencies correlate with IL-18 serum levels in multiple sclerosis. Eur J Immunol. 2014;44(10):3119–28. doi: 10.1002/eji.201344160 25043505.
40. Jiang J, Wang X, An H, Yang B, Cao Z, Liu Y, et al. Mucosal-associated invariant T-cell function is modulated by programmed death-1 signaling in patients with active tuberculosis. American journal of respiratory and critical care medicine. 2014;190(3):329–39. doi: 10.1164/rccm.201401-0106OC 24977786.
41. Kim JH, Psevdos G Jr., Gonzalez E, Singh S, Kilayko MC, Sharp V. All-cause mortality in hospitalized HIV-infected patients at an acute tertiary care hospital with a comprehensive outpatient HIV care program in New York City in the era of highly active antiretroviral therapy (HAART). Infection. 2013;41(2):545–51. doi: 10.1007/s15010-012-0386-7 23264096.
42. Blom K, Braun M, Pakalniene J, Dailidyte L, Beziat V, Lampen MH, et al. Specificity and Dynamics of Effector and Memory CD8 T Cell Responses in Human Tick-Borne Encephalitis Virus Infection. PLoS Pathog. 2015;11(1):e1004622. doi: 10.1371/journal.ppat.1004622 25611738.
43. Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 2012;12(11):749–61. doi: 10.1038/nri3307 23080391; PubMed Central PMCID: PMC4137483.
44. Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol. 2010;184(7):3433–41. doi: 10.4049/jimmunol.0904028 20181882; PubMed Central PMCID: PMC3725574.
45. Verhagen J, Wraith DC. Comment on "Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells". J Immunol. 2010;185(12):7129; author reply 30. doi: 10.4049/jimmunol.1090105 21127313.
46. Akimova T, Beier UH, Wang L, Levine MH, Hancock WW. Helios expression is a marker of T cell activation and proliferation. PLoS One. 2011;6(8):e24226. doi: 10.1371/journal.pone.0024226 21918685; PubMed Central PMCID: PMC3168881.
47. Serre K, Benezech C, Desanti G, Bobat S, Toellner KM, Bird R, et al. Helios is associated with CD4 T cells differentiating to T helper 2 and follicular helper T cells in vivo independently of Foxp3 expression. PLoS One. 2011;6(6):e20731. doi: 10.1371/journal.pone.0020731 21677778; PubMed Central PMCID: PMC3108993.
48. Pipkin ME, Sacks JA, Cruz-Guilloty F, Lichtenheld MG, Bevan MJ, Rao A. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity. 2010;32(1):79–90. doi: 10.1016/j.immuni.2009.11.012 20096607; PubMed Central PMCID: PMC2906224.
49. Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT, Palanivel VR, et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol. 2005;6(12):1236–44. doi: 10.1038/ni1268 16273099.
50. Sereti I, Estes JD, Thompson WL, Morcock DR, Fischl MA, Croughs T, et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathog. 2014;10(1):e1003890. doi: 10.1371/journal.ppat.1003890 24497828; PubMed Central PMCID: PMC3907377.
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 8
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques
- Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria
- Are Human Intestinal Eukaryotes Beneficial or Commensals?
- Illuminating Targets of Bacterial Secretion