Type I IFN Induction via Poly-ICLC Protects Mice against Cryptococcosis
Meningoencephalitis due to Cryptococcus neoformans is the leading cause of mortality in AIDS patients in the developing world. It has been known that depletion of CD4 T cells is the most critical predisposing factor to cryptococcosis in HIV infected patients. What has not been clear is the effect of HIV-induced innate inflammation in susceptibility to cryptococcosis. We treated C. neoformans infected mice with poly-ICLC (pICLC), a dsRNA virus mimic, to study the role of virus-induced type I IFN in host defense against cryptococcosis. PICLC treatment induced type I IFN in C. neoformans infected mice via MDA5 and significantly prolonged the survival of mice with reduced fungal burden in the brain. PICLC also protected mice from cryptococcosis caused by C. gattii. PICLC treatment recruited large numbers of neutrophils and Ly6Chigh monocytes into the lung parenchyma and suppressed eosinophilia. PICLC-mediated protection against C. neoformans required CD4 T cells and was associated with suppressed Th2 and enhanced Th17 responses. IFNγ and IL-17A were also important for pICLC-induced protection of infected mice. Our study demonstrates that induction of type I IFN dramatically improves host resistance against cryptococci by beneficial alterations in both innate and adaptive immune responses as long as CD4 cells are not depleted.
Vyšlo v časopise:
Type I IFN Induction via Poly-ICLC Protects Mice against Cryptococcosis. PLoS Pathog 11(8): e32767. doi:10.1371/journal.ppat.1005040
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1005040
Souhrn
Meningoencephalitis due to Cryptococcus neoformans is the leading cause of mortality in AIDS patients in the developing world. It has been known that depletion of CD4 T cells is the most critical predisposing factor to cryptococcosis in HIV infected patients. What has not been clear is the effect of HIV-induced innate inflammation in susceptibility to cryptococcosis. We treated C. neoformans infected mice with poly-ICLC (pICLC), a dsRNA virus mimic, to study the role of virus-induced type I IFN in host defense against cryptococcosis. PICLC treatment induced type I IFN in C. neoformans infected mice via MDA5 and significantly prolonged the survival of mice with reduced fungal burden in the brain. PICLC also protected mice from cryptococcosis caused by C. gattii. PICLC treatment recruited large numbers of neutrophils and Ly6Chigh monocytes into the lung parenchyma and suppressed eosinophilia. PICLC-mediated protection against C. neoformans required CD4 T cells and was associated with suppressed Th2 and enhanced Th17 responses. IFNγ and IL-17A were also important for pICLC-induced protection of infected mice. Our study demonstrates that induction of type I IFN dramatically improves host resistance against cryptococci by beneficial alterations in both innate and adaptive immune responses as long as CD4 cells are not depleted.
Zdroje
1. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS. 2009; 23: 525–530. doi: 10.1097/QAD.0b013e328322ffac 19182676
2. Bicanic T, Harrison TS. Cryptococcal meningitis. Br Med Bull. 2004; 72: 99–118. 15838017
3. Ullum H, Gotzsche PC, Victor J, Dickmeiss E, Skinhoj P, Pedersen BK. Defective natural immunity: an early manifestation of human immunodeficiency virus infection. J Exp Med. 1995; 182: 789–799. 7650485
4. Levy JA. HIV and the pathogenesis of AIDS. Washington DC: American Society of Microbiology; 1998.
5. Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ, et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med. 2004; 200: 749–759. 15365096
6. Siegal FP, Lopez C, Fitzgerald PA, Shah K, Baron P, Leiderman IZ, et al. Opportunistic infections in acquired immune deficiency syndrome result from synergistic defects of both the natural and adaptive components of cellular immunity. J Clin Invest. 1986; 78: 115–123. 3088039
7. Lopez C, Fitzgerald PA, Siegal FP. Severe acquired immune deficiency syndrome in male homosexuals: diminished capacity to make interferon-alpha in vitro associated with severe opportunistic infections. J Infect Dis. 1983; 148: 962–966. 6606691
8. Pinner RW, Hajjeh RA, Powderly WG. Prospects for preventing cryptococcosis in persons infected with human immunodeficiency virus. Clin Infect Dis. 1995; 21 Suppl 1: S103–107. 8547496
9. Mody CH, Lipscomb MF, Street NE, Toews GB. Depletion of CD4+ (L3T4+) lymphocytes in vivo impairs murine host defense to Cryptococcus neoformans. J Immunol. 1990; 144: 1472–1477. 1968080
10. Hill JO, Harmsen AG. Intrapulmonary growth and dissemination of an avirulent strain of Cryptococcus neoformans in mice depleted of CD4+ or CD8+ T cells. J Exp Med. 1991; 173: 755–758. 1900084
11. Huffnagle GB, Yates JL, Lipscomb MF. Immunity to a pulmonary Cryptococcus neoformans infection requires both CD4+ and CD8+ T cells. J Exp Med. 1991; 173: 793–800. 1672543
12. Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev. 2004; 202: 8–32. 15546383
13. Pestka S, Langer JA, Zoon KC, Samuel CE. Interferons and their actions. Annu Rev Biochem. 1987; 56: 727–777. 2441659
14. Sandler NG, Bosinger SE, Estes JD, Zhu RT, Tharp GK, Boritz E, et al. Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature. 2014; 511: 601–605. doi: 10.1038/nature13554 25043006
15. Hartshorn KL, Neumeyer D., Vogt M.W., Schooley R.T., Hirsch M.S. Activity of interferons alpha, beta and gamma against human immunodeficiency virus replication. AIDS Res Human Retrovivuses. 1987; 3: 125–133.
16. Poli G, Orenstein J.M., Kinter A., Folks T.M., Fauci A.S. Interferon-alpha but not AZT suppresses HIV expression in chronically infected cell lines. Science. 1989; 244: 575–577. 2470148
17. McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015; 15: 87–103. doi: 10.1038/nri3787 25614319
18. O'Connell RM, Saha SK, Vaidya SA, Bruhn KW, Miranda GA, Zarnegar B, et al. Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J Exp Med. 2004; 200: 437–445. 15302901
19. Carrero JA, Calderon B, Unanue ER. Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J Exp Med. 2004; 200: 535–540. 15302900
20. LeMessurier KS, Hacker H, Chi LY, Tuomanen E, Redecke V. Type I Interferon Protects against Pneumococcal Invasive Disease by Inhibiting Bacterial Transmigration across the Lung. PLoS Pathog. 2013; 9: e1003727. doi: 10.1371/journal.ppat.1003727 24244159
21. Antonelli LR, Gigliotti Rothfuchs A, Goncalves R, Roffe E, Cheever AW, Bafica A, et al. Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest. 2010; 120: 1674–1682. doi: 10.1172/JCI40817 20389020
22. Manca C, Tsenova L, Bergtold A, Freeman S, Tovey M, Musser JM, et al. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha /beta. Proc Natl Acad Sci U S A. 2001; 98: 5752–5757. 11320211
23. Denis M. Recombinant murine beta interferon enhances resistance of mice to systemic Mycobacterium avium infection. Infect Immun. 1991; 59: 1857–1859. 2019446
24. Inglis DO, Berkes CA, Hocking Murray DR, Sil A. Conidia but not yeast cells of the fungal pathogen Histoplasma capsulatum trigger a type I interferon innate immune response in murine macrophages. Infect Immun. 2010; 78: 3871–3882. doi: 10.1128/IAI.00204-10 20605974
25. Maheshwari RK, Tandon RN, Feuillette AR, Mahouy G, Badillet G, Friedman RM. Interferon inhibits Aspergillus fumigatus growth in mice: an activity against an extracellular infection. J Interferon Res. 1988; 8: 35–44. 2452848
26. Majer O, Bourgeois C, Zwolanek F, Lassnig C, Kerjaschki D, Mack M, et al. Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections. PLoS Pathog. 2012; 8: e1002811. doi: 10.1371/journal.ppat.1002811 22911155
27. Bourgeois C, Majer O, Frohner IE, Lesiak-Markowicz I, Hildering KS, Glaser W, et al. Conventional dendritic cells mount a type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-beta signaling. J Immunol. 2011; 186: 3104–3112. doi: 10.4049/jimmunol.1002599 21282509
28. del Fresno C, Soulat D, Roth S, Blazek K, Udalova I, Sancho D, et al. Interferon-beta production via Dectin-1-Syk-IRF5 signaling in dendritic cells is crucial for immunity to C. albicans. Immunity. 2013; 38: 1176–1186. doi: 10.1016/j.immuni.2013.05.010 23770228
29. Bogdan C. The function of type I interferons in antimicrobial immunity. Curr Opin Immunol. 2000; 12: 419–424. 10899033
30. Smeekens SP, Ng A, Kumar V, Johnson MD, Plantinga TS, van Diemen C, et al. Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat Commun. 2013; 4: 1342 doi: 10.1038/ncomms2343 23299892
31. Tandon RN, Feuillette AR, Mahouy G, Badillet G, Friedman RM, Maheshwari RK. Interferon protects mice against an extracellular infection of Aspergillus fumigatus. Ann N Y Acad Sci. 1988; 544: 409–411. 3063178
32. Levy HB, Riley FL, Lvovsky E, Stephen EE. Interferon induction in primates by stabilized polyriboinosinic acid-polyribocytidylic acid: effect of component size. Infect Immun. 1981; 34: 416–421. 6171519
33. Levy HB, Baer G, Baron S, Buckler CE, Gibbs CJ, Iadarola MJ, et al. A modified polyriboinosinic-polyribocytidylic acid complex that induces interferon in primates. J Infect Dis. 1975; 132: 434–439. 810520
34. Meylan E, Tschopp J. Toll-Like Receptors and RNA Helicases: Two Parallel Ways to trigger antiviral responses. Mol Cell. 2006; 22: 561–569. 16762830
35. Ishii KJ, Koyama S, Nakagawa A, Coban C, Akira S. Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe. 2008; 3: 352–363. doi: 10.1016/j.chom.2008.05.003 18541212
36. Matsumoto M, Seya T. TLR3: interferon induction by double-stranded RNA including poly(I:C). Adv Drug Deliv Rev. 2008; 60: 805–812. doi: 10.1016/j.addr.2007.11.005 18262679
37. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006; 441: 101–105. 16625202
38. De Miranda J, Yaddanapudi K, Hornig M, Lipkin WI. Astrocytes recognize intracellular polyinosinic-polycytidylic acid via MDA-5. FASEB J. 2009; 23: 1064–1071. doi: 10.1096/fj.08-121434 19036857
39. Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci. 2008; 1143: 1–20. doi: 10.1196/annals.1443.020 19076341
40. Anderson KG, Mayer-Barber K, Sung H, Beura L, James BR, Taylor JJ, et al. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat Protoc. 2014; 9: 209–222. doi: 10.1038/nprot.2014.005 24385150
41. Arora S, Hernandez Y, Erb-Downward JR, McDonald RA, Toews GB, Huffnagle GB. Role of IFN-gamma in regulating T2 immunity and the development of alternatively activated macrophages during allergic bronchopulmonary mycosis. J Immunol. 2005; 174: 6346–6356. 15879135
42. Ngamskulrungroj P, Chang Y, Sionov E, Kwon-Chung KJ. The primary target organ of Cryptococcus gattii is different from that of Cryptococcus neoformans in a murine model. MBio. 2012; 3: e00103–12. doi: 10.1128/mBio.00103-12 22570277
43. Huang CC, Duffy KE, San Mateo LR, Amegadzie BY, Sarisky RT, Mbow ML. A pathway analysis of poly(I:C)-induced global gene expression change in human peripheral blood mononuclear cells. Physiol Genomics. 2006; 26: 125–133. 16554548
44. Caskey M, Lefebvre F, Filali-Mouhim A, Cameron MJ, Goulet JP, Haddad EK, et al. Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans. J Exp Med. 2011; 208: 2357–2366. doi: 10.1084/jem.20111171 22065672
45. Regelson W, Munson A.E. The reticuloendothelial effects of interferon inducers:Polyanionic and non-polyanionic phylaxis against microorganisms. Annals New York Acad Sci 1970; 173: 831–841.
46. Worthington M, Hasenclever HF. Effect of an interferon stimulator, polyinosinic: polycytidylic acid, on experimental fungus infections. Infect Immun. 1972; 5: 199–202. 4564399
47. Schulz O, Diebold SS, Chen M, Naslund TI, Nolte MA, Alexopoulou L, et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature. 2005; 433: 887–892. 15711573
48. Gitlin L, Barchet W, Gilfillan S, Cella M, Beutler B, Flavell RA, et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci U S A. 2006; 103: 8459–8464. 16714379
49. Jaeger M, van der Lee R, Cheng SC, Johnson MD, Kumar V, Ng A, et al. The RIG-I-like helicase receptor MDA5 (IFIH1) is involved in the host defense against Candida infections. Eur J Clin Microbiol Infect Dis. 2015; 34: 963–974. doi: 10.1007/s10096-014-2309-2 25579795
50. Jensen J, Balish E. Enhancement of susceptibility of CB-17 mice to systemic candidiasis by poly(I. C)-induced interferon. Infect Immun. 1993; 61: 3530–3532. 8335384
51. Guarda G, Braun M, Staehli F, Tardivel A, Mattmann C, Forster I, et al. Type I Interferon Inhibits Interleukin-1 Production and Inflammasome Activation. Immunity. 2011; 34: 213–223. doi: 10.1016/j.immuni.2011.02.006 21349431
52. Patino MM, Williams D, Ahrens J, Graybill JR. Experimental Histoplasmosis in the Beige Mouse. J Leukoc Biol. 1987; 41: 228–235. 3470417
53. Osterholzer JJ, Chen GH, Olszewski MA, Zhang YM, Curtis JL, Huffnagle GB, et al. Chemokine receptor 2-mediated accumulation of fungicidal exudate macrophages in mice that clear cryptococcal lung infection. Am J Pathol. 2011; 178: 198–211. doi: 10.1016/j.ajpath.2010.11.006 21224057
54. Osterholzer JJ, Chen GH, Olszewski MA, Curtis JL, Huffnagle GB, Toews GB. Accumulation of CD11b+ lung dendritic cells in response to fungal infection results from the CCR2-mediated recruitment and differentiation of Ly-6Chigh monocytes. J Immunol. 2009; 183: 8044–8053. doi: 10.4049/jimmunol.0902823 19933856
55. Traynor TR, Kuziel WA, Toews GB, Huffnagle GB. CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J Immunol. 2000; 164: 2021–2027. 10657654
56. Huffnagle GB, Boyd MB, Street NE, Lipscomb MF. IL-5 is required for eosinophil recruitment, crystal deposition, and mononuclear cell recruitment during a pulmonary Cryptococcus neoformans infection in genetically susceptible mice (C57BL/6). J Immunol. 1998; 160: 2393–2400. 9498782
57. Holmer SM, Evans KS, Asfaw YG, Saini D, Schell WA, Ledford JG, et al. Impact of surfactant protein D, interleukin-5, and eosinophilia on Cryptococcosis. Infect Immun. 2014; 82: 683–693. doi: 10.1128/IAI.00855-13 24478083
58. Valdez PA, Vithayathil PJ, Janelsins BM, Shaffer AL, Williamson PR, Datta SK. Prostaglandin E2 suppresses antifungal immunity by inhibiting interferon regulatory factor 4 function and interleukin-17 expression in T cells. Immunity. 2012; 36: 668–679. doi: 10.1016/j.immuni.2012.02.013 22464170
59. Murdock BJ, Huffnagle GB, Olszewski MA, Osterholzer JJ. Interleukin-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment, activation, and gamma interferon production. Infect Immun. 2014; 82: 937–948. doi: 10.1128/IAI.01477-13 24324191
60. Wozniak KL, Hardison SE, Kolls JK, Wormley FL. Role of IL-17A on resolution of pulmonary C. neoformans infection. PLoS One. 2011; 6: e17204. doi: 10.1371/journal.pone.0017204 21359196
61. Korn T, Bettelli E, Oukka M., Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009; 27: 485–517. doi: 10.1146/annurev.immunol.021908.132710 19132915
62. Voelz K, Lammas DA, May RC. Cytokine signaling regulates the outcome of intracellular macrophage parasitism by Cryptococcus neoformans. Infect Immun. 2009; 77: 3450–3457. doi: 10.1128/IAI.00297-09 19487474
63. Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature. 2014; 511: 99–103. doi: 10.1038/nature13489 24990750
64. Redford PS, Mayer-Barber KD, McNab FW, Stavropoulos E, Wack A, Sher A, et al. Influenza A virus impairs control of Mycobacterium tuberculosis coinfection through a type I interferon receptor-dependent pathway. J Infect Dis. 2014; 209: 270–274. doi: 10.1093/infdis/jit424 23935205
65. Biondo C, Midiri A, Gambuzza M, Gerace E, Falduto M, Galbo R, et al. IFN-alpha/beta signaling is required for polarization of cytokine responses toward a protective type 1 pattern during experimental cryptococcosis. J Immunol. 2008; 181: 566–573. 18566423
66. Chen S, Sorrell T, Nimmo G, Speed B, Currie B, Ellis D, et al. Epidemiology and host- and variety-dependent characteristics of infection due to Cryptococcus neoformans in Australia and New Zealand. Australasian Cryptococcal Study Group. Clin Infect Dis. 2000; 31: 499–508. 10987712
67. Brouwer AE, Rajanuwong A, Chierakul W, Griffin GE, Larsen RA, White NJ, et al. Combination antifungal therapies for HIV-associated cryptococcal meningitis: a randomised trial. Lancet. 2004; 363: 1764–1767. 15172774
68. Deonarain R, Alcami A, Alexiou M, Dallman MJ, Gewert DR, Porter AC. Impaired antiviral response and alpha/beta interferon induction in mice lacking beta interferon. J Virol. 2000; 74: 3404–3409. 10708458
69. Sugui JA, Vinh DC, Nardone G, Shea YR, Chang YC, Zelazny AM, et al. Neosartorya udagawae (Aspergillus udagawae), an emerging agent of aspergillosis: how different is it from Aspergillus fumigatus? J Clin Microbiol. 2010; 48: 220–228. doi: 10.1128/JCM.01556-09 19889894
70. Rao GV, Tinkle S, Weissman DN, Antonini JM, Kashon ML, Salmen R, et al. Efficacy of a technique for exposing the mouse lung to particles aspirated from the pharynx. J Toxicol Environ Health A. 2003; 66: 1441–1452. 12857634
71. Sakai S, Kauffman KD, Schenkel JM, McBerry CC, Mayer-Barber KD, Masopust D, et al. Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells. J Immunol. 2014; 192: 2965–2969. doi: 10.4049/jimmunol.1400019 24591367
72. Roederer M, Nozzi JL, Nason MC. SPICE: exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A. 2011; 79: 167–174. doi: 10.1002/cyto.a.21015 21265010
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2015 Číslo 8
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques
- Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria
- Are Human Intestinal Eukaryotes Beneficial or Commensals?
- Illuminating Targets of Bacterial Secretion