A One Base Pair Deletion in the Canine Gene Causes Exon Skipping and Late-Onset Neuronal Ceroid Lipofuscinosis in the Tibetan Terrier
Neuronal ceroid lipofuscinosis (NCL) is a progressive neurodegenerative disease characterized by brain and retinal atrophy and the intracellular accumulation of autofluorescent lysosomal storage bodies resembling lipofuscin in neurons and other cells. Tibetan terriers show a late-onset lethal form of NCL manifesting first visible signs at 5–7 years of age. Genome-wide association analyses for 12 Tibetan-terrier-NCL-cases and 7 Tibetan-terrier controls using the 127K canine Affymetrix SNP chip and mixed model analysis mapped NCL to dog chromosome (CFA) 2 at 83.71–84.72 Mb. Multipoint linkage and association analyses in 376 Tibetan terriers confirmed this genomic region on CFA2. A mutation analysis for 14 positional candidate genes in two NCL-cases and one control revealed a strongly associated single nucleotide polymorphism (SNP) in the MAPK PM20/PM21 gene and a perfectly with NCL associated single base pair deletion (c.1620delG) within exon 16 of the ATP13A2 gene. The c.1620delG mutation in ATP13A2 causes skipping of exon 16 presumably due to a broken exonic splicing enhancer motif. As a result of this mutation, ATP13A2 lacks 69 amino acids. All known 24 NCL cases were homozygous for this deletion and all obligate 35 NCL-carriers were heterozygous. In a sample of 144 dogs from eleven other breeds, the c.1620delG mutation could not be found. Knowledge of the causative mutation for late-onset NCL in Tibetan terrier allows genetic testing of these dogs to avoid matings of carrier animals. ATP13A2 mutations have been described in familial Parkinson syndrome (PARK9). Tibetan terriers with these mutations provide a valuable model for a PARK9-linked disease and possibly for manganese toxicity in synucleinopathies.
Vyšlo v časopise:
A One Base Pair Deletion in the Canine Gene Causes Exon Skipping and Late-Onset Neuronal Ceroid Lipofuscinosis in the Tibetan Terrier. PLoS Genet 7(10): e32767. doi:10.1371/journal.pgen.1002304
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002304
Souhrn
Neuronal ceroid lipofuscinosis (NCL) is a progressive neurodegenerative disease characterized by brain and retinal atrophy and the intracellular accumulation of autofluorescent lysosomal storage bodies resembling lipofuscin in neurons and other cells. Tibetan terriers show a late-onset lethal form of NCL manifesting first visible signs at 5–7 years of age. Genome-wide association analyses for 12 Tibetan-terrier-NCL-cases and 7 Tibetan-terrier controls using the 127K canine Affymetrix SNP chip and mixed model analysis mapped NCL to dog chromosome (CFA) 2 at 83.71–84.72 Mb. Multipoint linkage and association analyses in 376 Tibetan terriers confirmed this genomic region on CFA2. A mutation analysis for 14 positional candidate genes in two NCL-cases and one control revealed a strongly associated single nucleotide polymorphism (SNP) in the MAPK PM20/PM21 gene and a perfectly with NCL associated single base pair deletion (c.1620delG) within exon 16 of the ATP13A2 gene. The c.1620delG mutation in ATP13A2 causes skipping of exon 16 presumably due to a broken exonic splicing enhancer motif. As a result of this mutation, ATP13A2 lacks 69 amino acids. All known 24 NCL cases were homozygous for this deletion and all obligate 35 NCL-carriers were heterozygous. In a sample of 144 dogs from eleven other breeds, the c.1620delG mutation could not be found. Knowledge of the causative mutation for late-onset NCL in Tibetan terrier allows genetic testing of these dogs to avoid matings of carrier animals. ATP13A2 mutations have been described in familial Parkinson syndrome (PARK9). Tibetan terriers with these mutations provide a valuable model for a PARK9-linked disease and possibly for manganese toxicity in synucleinopathies.
Zdroje
1. JollyRDWalkleySU 1997 Lysosomal storage diseases of animals: an essay in comparative pathology. Vet Pathol 34 527 548
2. MoleS 2004 The genetic spectrum of human neuronal ceroid-lipofuscinoses. Brain Pathol 14 70 76
3. TammenIHouwelingPJFrugierTMitchellNLKayGW 2006 A missense mutation (c.184C>T) in ovine CLN6 causes neuronal ceroid lipofuscinosis in Merino sheep whereas affected South Hampshire sheep have reduced levels of CLN6 mRNA. Biochim Biophys Acta 10 898 905
4. HouwelingPJCavanaghJAPalmerDNFrugierTMitchellNL 2006 Neuronal ceroid lipofuscinosis in Devon cattle is caused by a single base duplication (c.662dupG) in the bovine CLN5 gene. Biochim Biophys Acta 10 890 897
5. FrugierTMitchellNLTammenIHouwelingPJArthurDG 2008 A new large animal model of CLN5 neuronal ceroid lipofuscinosis in Borderdale sheep is caused by a nucleotide substitution at a consensus splice site (c.571+1G>A) leading to excision of exon 3. Neurobiol Dis 2 306 315
6. SiintolaETopcuMAulaNLohiHMinassianBA 2007 The novel neuronal ceroid lipofuscinosis gene MFSD8 encodes a putative lysosomal transporter. Am J Hum Genet 1 136 146
7. SandersDNFariasFHJohnsonGSChiangVCookJR 2010 A mutation in canine PPT1 causes early onset neuronal ceroid lipofuscinosis in a Dachshund. Mol Genet Metab 100 349 356
8. RiisRCCummingsJFLoewERde LahuntaA 1992 Tibetan terrier model of canine ceroid lipofuscinosis. Am J Med Genet 42 615 621
9. KatzMLKhanSAwanoTShahidSASiakotosAN 2005 A mutation in theCLN8 gene in English Setter dogs with neuronal ceroid-lipofuscinosis. Biochem Biophys Res Commun 327 541 547
10. DrögemüllerCWöhlkeADistlO 2005 Evaluation of the canine TPP1 gene as a candidate for neuronal ceroid lipofuscinosis in Tibetan Terrier and Polish Owczarek Nizinny dogs. Anim Genet 36 178 179
11. DrögemüllerCWöhlkeADistlO 2005 Characterization of candidate genes for neuronal ceroid lipofuscinosis in dog. J Hered 96 735 738
12. WöhlkeADistlODrögemüllerC 2005 : The canine CTSD gene as a candidate for late-onset neuronal ceroid lipofuscinosis. Anim Genet 36 530 532
13. WöhlkeADistlODrögemüllerC 2006 Characterization of the canine CLCN3 gene and evaluation as candidate for late-onset NCL. BMC Genet 7 13
14. FariasFHZengRJohnsonGSWiningerFATaylorJF 2011 A truncating mutation in ATP13A2 is responsible for adult-onset neuronal ceroid lipofuscinosis in Tibetan terriers. Neurobiol Dis 42 468 474
15. WiggintonJEAbecasisGR 2005 PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics 21 3445 3447
16. KreutzerRLeebTMüllerGMoritzABaumgärtnerW 2005 A duplication in the canine-galactosidase gene GLB1 causes exon skipping and GM1-gangliosidosis in Alaskan huskies. Genetics 170 1857 1861
17. ParsamVLAliMJHonavarSGVemugantiGKKannabiranC 2011 Splicing aberrations caused by constitutional RB1 gene mutations in retinoblastoma. J Biosci 36 281 287
18. RaponiMKralovicovaJCopsonEDivinaPEcclesD 2011 Prediction of single-nucleotide substitutions that result in exon skipping: identification of a splicing silencer in BRCA1 exon 6. Hum Mutat 32 436 444
19. DesmetFOHamrounDLalandeMCollod-BéroudGClaustresM 2009 Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37 e67
20. WoolfeAMullikinJCElnitskiL 2011 Genomic features defining exonic variants that modulate splicing. Genome Biology 2010 11 R20
21. RamirezAHeimbachAGründemannJStillerBHampshireD 2006 : Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 10 1184 1191
22. Di FonzoAChienHFSocalMGiraudoSTassorelliC 2007 ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 68 1557 1562
23. SantoroLBreedveldGJManganelliFIodiceRPisciottaC 2011 Novel ATP13A2 (PARK9) homozygous mutation in a family with marked phenotype variability. Neurogenetics 12 33 39
24. GitlerADChesiAGeddieMLStrathearnKEHamamichiS 2009 Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet 41 308 315
25. PurcellSNealeBTodd-BrownKThomasLFerreiraMA 2007 PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81 559 575
26. BradburyPJZhangZKroonDECasstevensTMRamdossY 2007 : TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 19 2633 2635
27. AbecasisGRChernySSCooksonWOCardonLR 2002 Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30 97 101
28. GuyonRLorentzenTDHitteCKimLCadieuE 2003 A 1-Mb resolution radiation hybrid map of the canine genome. Proc Natl Acad Sci USA 100 5296 5301
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 10
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- The Glycobiome Reveals Mechanisms of Pentose and Hexose Co-Utilization in Bacteria
- Global Mapping of Cell Type–Specific Open Chromatin by FAIRE-seq Reveals the Regulatory Role of the NFI Family in Adipocyte Differentiation
- Genetic Determinants of Serum Testosterone Concentrations in Men
- MicroRNA Expression and Regulation in Human, Chimpanzee, and Macaque Brains