Global Mapping of Cell Type–Specific Open Chromatin by FAIRE-seq Reveals the Regulatory Role of the NFI Family in Adipocyte Differentiation
Identification of regulatory elements within the genome is crucial for understanding the mechanisms that govern cell type–specific gene expression. We generated genome-wide maps of open chromatin sites in 3T3-L1 adipocytes (on day 0 and day 8 of differentiation) and NIH-3T3 fibroblasts using formaldehyde-assisted isolation of regulatory elements coupled with high-throughput sequencing (FAIRE-seq). FAIRE peaks at the promoter were associated with active transcription and histone modifications of H3K4me3 and H3K27ac. Non-promoter FAIRE peaks were characterized by H3K4me1+/me3-, the signature of enhancers, and were largely located in distal regions. The non-promoter FAIRE peaks showed dynamic change during differentiation, while the promoter FAIRE peaks were relatively constant. Functionally, the adipocyte- and preadipocyte-specific non-promoter FAIRE peaks were, respectively, associated with genes up-regulated and down-regulated by differentiation. Genes highly up-regulated during differentiation were associated with multiple clustered adipocyte-specific FAIRE peaks. Among the adipocyte-specific FAIRE peaks, 45.3% and 11.7% overlapped binding sites for, respectively, PPARγ and C/EBPα, the master regulators of adipocyte differentiation. Computational motif analyses of the adipocyte-specific FAIRE peaks revealed enrichment of a binding motif for nuclear family I (NFI) transcription factors. Indeed, ChIP assay showed that NFI occupy the adipocyte-specific FAIRE peaks and/or the PPARγ binding sites near PPARγ, C/EBPα, and aP2 genes. Overexpression of NFIA in 3T3-L1 cells resulted in robust induction of these genes and lipid droplet formation without differentiation stimulus. Overexpression of dominant-negative NFIA or siRNA–mediated knockdown of NFIA or NFIB significantly suppressed both induction of genes and lipid accumulation during differentiation, suggesting a physiological function of these factors in the adipogenic program. Together, our study demonstrates the utility of FAIRE-seq in providing a global view of cell type–specific regulatory elements in the genome and in identifying transcriptional regulators of adipocyte differentiation.
Vyšlo v časopise:
Global Mapping of Cell Type–Specific Open Chromatin by FAIRE-seq Reveals the Regulatory Role of the NFI Family in Adipocyte Differentiation. PLoS Genet 7(10): e32767. doi:10.1371/journal.pgen.1002311
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002311
Souhrn
Identification of regulatory elements within the genome is crucial for understanding the mechanisms that govern cell type–specific gene expression. We generated genome-wide maps of open chromatin sites in 3T3-L1 adipocytes (on day 0 and day 8 of differentiation) and NIH-3T3 fibroblasts using formaldehyde-assisted isolation of regulatory elements coupled with high-throughput sequencing (FAIRE-seq). FAIRE peaks at the promoter were associated with active transcription and histone modifications of H3K4me3 and H3K27ac. Non-promoter FAIRE peaks were characterized by H3K4me1+/me3-, the signature of enhancers, and were largely located in distal regions. The non-promoter FAIRE peaks showed dynamic change during differentiation, while the promoter FAIRE peaks were relatively constant. Functionally, the adipocyte- and preadipocyte-specific non-promoter FAIRE peaks were, respectively, associated with genes up-regulated and down-regulated by differentiation. Genes highly up-regulated during differentiation were associated with multiple clustered adipocyte-specific FAIRE peaks. Among the adipocyte-specific FAIRE peaks, 45.3% and 11.7% overlapped binding sites for, respectively, PPARγ and C/EBPα, the master regulators of adipocyte differentiation. Computational motif analyses of the adipocyte-specific FAIRE peaks revealed enrichment of a binding motif for nuclear family I (NFI) transcription factors. Indeed, ChIP assay showed that NFI occupy the adipocyte-specific FAIRE peaks and/or the PPARγ binding sites near PPARγ, C/EBPα, and aP2 genes. Overexpression of NFIA in 3T3-L1 cells resulted in robust induction of these genes and lipid droplet formation without differentiation stimulus. Overexpression of dominant-negative NFIA or siRNA–mediated knockdown of NFIA or NFIB significantly suppressed both induction of genes and lipid accumulation during differentiation, suggesting a physiological function of these factors in the adipogenic program. Together, our study demonstrates the utility of FAIRE-seq in providing a global view of cell type–specific regulatory elements in the genome and in identifying transcriptional regulators of adipocyte differentiation.
Zdroje
1. LanderESLintonLMBirrenBNusbaumCZodyMC 2001 Initial sequencing and analysis of the human genome. Nature 409 860 921
2. WuC 1980 The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286 854 860
3. SongLCrawfordGE 2010 DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc 2010 pdb prot5384
4. JohnSSaboPJThurmanRESungMHBiddieSC 2011 Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet
5. HeintzmanNDHonGCHawkinsRDKheradpourPStarkA 2009 Histone modifications at human enhancers reflect global cell type–specific gene expression. Nature 459 108 112
6. SiersbaekRNielsenRJohnSSungMHBaekS 2011 Extensive chromatin remodelling and establishment of transcription factor ‘hotspots’ during early adipogenesis. Embo J 30 1459 1472
7. GiresiPGLiebJD 2009 Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). Methods 48 233 239
8. GiresiPGKimJMcDaniellRMIyerVRLiebJD 2007 FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 17 877 885
9. BirneyEStamatoyannopoulosJADuttaAGuigoRGingerasTR 2007 Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447 799 816
10. GaultonKJNammoTPasqualiLSimonJMGiresiPG 2010 A map of open chromatin in human pancreatic islets. Nat Genet 42 255 259
11. RosenEEguchiJXuZ 2009 Transcriptional targets in adipocyte biology. Expert Opin Ther Targets 13 975 986
12. WakiHTontonozP 2007 Endocrine functions of adipose tissue. Annu Rev Pathol 2 31 56
13. BarakYNelsonMCOngESJonesYZRuiz-LozanoP 1999 PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 4 585 595
14. KubotaNTerauchiYMikiHTamemotoHYamauchiT 1999 PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 4 597 609
15. RosenEDSarrafPTroyAEBradwinGMooreK 1999 PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4 611 617
16. TontonozPHuESpiegelmanBM 1994 Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79 1147 1156
17. ImaiTTakakuwaRMarchandSDentzEBornertJM 2004 Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. Proc Natl Acad Sci U S A 101 4543 4547
18. LehmannJMMooreLBSmith-OliverTAWilkisonWOWillsonTM 1995 An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270 12953 12956
19. WuZBucherNLFarmerSR 1996 Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol Cell Biol 16 4128 4136
20. TontonozPSpiegelmanBM 2008 Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 77 289 312
21. NielsenRPedersenTAHagenbeekDMoulosPSiersbaekR 2008 Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev 22 2953 2967
22. LefterovaMIZhangYStegerDJSchuppMSchugJ 2008 PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev 22 2941 2952
23. NakachiYYagiKNikaidoIBonoHTonouchiM 2008 Identification of novel PPARgamma target genes by integrated analysis of ChIP-on-chip and microarray expression data during adipocyte differentiation. Biochem Biophys Res Commun 372 362 366
24. WakabayashiKOkamuraMTsutsumiSNishikawaNSTanakaT 2009 The peroxisome proliferator-activated receptor gamma/retinoid X receptor alpha heterodimer targets the histone modification enzyme PR-Set7/Setd8 gene and regulates adipogenesis through a positive feedback loop. Mol Cell Biol 29 3544 3555
25. HamzaMSPottSVegaVBThomsenJSKandhadayarGS 2009 De-novo identification of PPARgamma/RXR binding sites and direct targets during adipogenesis. PLoS ONE 4 e4907 doi:10.1371/journal.pone.0004907
26. StegerDJGrantGRSchuppMTomaruTLefterovaMI 2010 Propagation of adipogenic signals through an epigenomic transition state. Genes Dev 24 1035 1044
27. LefterovaMIStegerDJZhuoDQatananiMMullicanSE 2010 Cell-specific determinants of peroxisome proliferator-activated receptor gamma function in adipocytes and macrophages. Mol Cell Biol 30 2078 2089
28. MikkelsenTSXuZZhangXWangLGimbleJM 2010 Comparative epigenomic analysis of murine and human adipogenesis. Cell 143 156 169
29. OkamuraMKudoHWakabayashiKTanakaTNonakaA 2009 COUP-TFII acts downstream of Wnt/beta-catenin signal to silence PPARgamma gene expression and repress adipogenesis. Proc Natl Acad Sci U S A 106 5819 5824
30. SakabeNJNobregaMA 2010 Genome-wide maps of transcription regulatory elements. Wiley Interdiscip Rev Syst Biol Med 422 437
31. PhillipsJECorcesVG 2009 CTCF: master weaver of the genome. Cell 137 1194 1211
32. MoriTSakaueHIguchiHGomiHOkadaY 2005 Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 280 12867 12875
33. PruittKDTatusovaTMaglottDR 2007 NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35 D61 65
34. RobertsonAGBilenkyMTamAZhaoYZengT 2008 Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding. Genome Res 18 1906 1917
35. HeintzmanNDStuartRKHonGFuYChingCW 2007 Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39 311 318
36. KarlssonMContrerasJAHellmanUTornqvistHHolmC 1997 cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. J Biol Chem 272 27218 27223
37. NishinoNTamoriYTateyaSKawaguchiTShibakusaT 2008 FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 118 2808 2821
38. Huang daWShermanBTLempickiRA 2009 Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4 44 57
39. KliewerSAUmesonoKNoonanDJHeymanRAEvansRM 1992 Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358 771 774
40. BaileyTLElkanC 1994 Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2 28 36
41. ChandraVHuangPHamuroYRaghuramSWangY 2008 Structure of the intact PPAR-gamma-RXR-alpha nuclear receptor complex on DNA. Nature 350 356
42. SchmidtSFJorgensenMChenYNielsenRSandelinA 2011 Cross-species comparison of C/EBPa and PPARg profiles in mouse and human adipocytes reveals interdependent retention of binding sites. NCBI GEO (Gene Experssion Omnibus) GSE27450
43. YamauchiTKamonJItoYTsuchidaAYokomizoT 2003 Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423 762 769
44. KadowakiTYamauchiTKubotaNHaraKUekiK 2006 Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116 1784 1792
45. TsuchidaAYamauchiTTakekawaSHadaYItoY 2005 Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes 54 3358 3370
46. SunXHanRWangZChenY 2006 Regulation of adiponectin receptors in hepatocytes by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Diabetologia 49 1303 1310
47. CrawfordGEHoltIEWhittleJWebbBDTaiD 2006 Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res 16 123 131
48. StitzelMLSethupathyPPearsonDSChinesPSSongL 2010 Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. Cell Metab 12 443 455
49. JiHVokesSAWongWH 2006 A comparative analysis of genome-wide chromatin immunoprecipitation data for mammalian transcription factors. Nucleic Acids Res 34 e146
50. EbisuyaMYamamotoTNakajimaMNishidaE 2008 Ripples from neighbouring transcription. Nat Cell Biol 10 1106 1113
51. WingenderEChenXHehlRKarasHLiebichI 2000 TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 28 316 319
52. BryneJCValenETangMHMarstrandTWintherO 2008 JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res 36 D102 106
53. GuptaRKAranyZSealePMepaniRJYeL 2010 Transcriptional control of preadipocyte determination by Zfp423. Nature 464 619 623
54. TominagaSYamaguchiTTakahashiSHiroseFOsumiT 2005 Negative regulation of adipogenesis from human mesenchymal stem cells by Jun N-terminal kinase. Biochem Biophys Res Commun 326 499 504
55. HuEKimJBSarrafPSpiegelmanBM 1996 Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 274 2100 2103
56. NagataKGuggenheimerRAHurwitzJ 1983 Specific binding of a cellular DNA replication protein to the origin of replication of adenovirus DNA. Proc Natl Acad Sci U S A 80 6177 6181
57. GronostajskiRM 2000 Roles of the NFI/CTF gene family in transcription and development. Gene 249 31 45
58. NamihiraMKohyamaJSemiKSanosakaTDeneenB 2009 Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev Cell 16 245 255
59. GreenHKehindeO 1974 Sublines of mouse 3T3 cells that accumulate lipid. Cell 1 113 116
60. JimenezMAAkerbladPSigvardssonMRosenED 2007 Critical role for Ebf1 and Ebf2 in the adipogenic transcriptional cascade. Mol Cell Biol 27 743 757
61. ParkPJ 2009 ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10 669 680
62. CarrollJSLiuXSBrodskyASLiWMeyerCA 2005 Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122 33 43
63. KoinumaDTsutsumiSKamimuraNTaniguchiHMiyazawaK 2009 Chromatin immunoprecipitation on microarray analysis of Smad2/3 binding sites reveals roles of ETS1 and TFAP2A in transforming growth factor beta signaling. Mol Cell Biol 29 172 186
64. das NevesLDuchalaCSTolentino-SilvaFHaxhiuMAColmenaresC 1999 Disruption of the murine nuclear factor I-A gene (Nfia) results in perinatal lethality, hydrocephalus, and agenesis of the corpus callosum. Proc Natl Acad Sci U S A 96 11946 11951
65. Steele-PerkinsGPlachezCButzKGYangGBachurskiCJ 2005 The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol Cell Biol 25 685 698
66. Steele-PerkinsGButzKGLyonsGEZeichner-DavidMKimHJ 2003 Essential role for NFI-C/CTF transcription-replication factor in tooth root development. Mol Cell Biol 23 1075 1084
67. MessinaGBiressiSMonteverdeSMagliACassanoM 2010 Nfix regulates fetal-specific transcription in developing skeletal muscle. Cell 140 554 566
68. PlachezCLindwallCSunnNPiperMMoldrichRX 2008 Nuclear factor I gene expression in the developing forebrain. J Comp Neurol 508 385 401
69. DrillerKPagenstecherAUhlMOmranHBerlisA 2007 Nuclear factor I X deficiency causes brain malformation and severe skeletal defects. Mol Cell Biol 27 3855 3867
70. ParkKWHalperinDSTontonozP 2008 Before they were fat: adipocyte progenitors. Cell Metab 8 454 457
71. GravesRATontonozPRossSRSpiegelmanBM 1991 Identification of a potent adipocyte-specific enhancer: involvement of an NF-1-like factor. Genes Dev 5 428 437
72. TontonozPGravesRABudavariAIErdjument-BromageHLuiM 1994 Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR gamma and RXR alpha. Nucleic Acids Res 22 5628 5634
73. EeckhouteJCarrollJSGeistlingerTRTorres-ArzayusMIBrownM 2006 A cell type–specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes Dev 20 2513 2526
74. JiaLBermanBPJariwalaUYanXCoganJP 2008 Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity. PLoS ONE 3 e3645 doi:10.1371/journal.pone.0003645
75. KaneshiroKTsutsumiSTsujiSShirahigeKAburataniH 2007 An integrated map of p53-binding sites and histone modification in the human ENCODE regions. Genomics 89 178 188
76. KawaseTOhkiRShibataTTsutsumiSKamimuraN 2009 PH domain-only protein PHLDA3 is a p53-regulated repressor of Akt. Cell 136 535 550
77. FejesAPRobertsonGBilenkyMVarholRBainbridgeM 2008 FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Bioinformatics 24 1729 1730
78. BlankenbergDVon KusterGCoraorNAnandaGLazarusR 2010 Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol Chapter 19 Unit 19 10 11–21
79. GoecksJNekrutenkoATaylorJ 2010 Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11 R86
80. ShinHLiuTManraiAKLiuXS 2009 CEAS: cis-regulatory element annotation system. Bioinformatics 25 2605 2606
81. http://david.abcc.ncifcrf.gov/forum/cgi-bin/ikonboard.cgi?act=STf=3t=1311
82. McLeayRCBaileyTL 2009 Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics 11 165
83. ChenN 2004 Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics Chapter 4 Unit 4 10
84. WakiHParkKWMitroNPeiLDamoiseauxR 2007 The small molecule harmine is an antidiabetic cell type–specific regulator of PPARgamma expression. Cell Metab 5 357 370
85. DaviesBSWakiHBeigneuxAPFarberEWeinsteinMM 2008 The expression of GPIHBP1, an endothelial cell binding site for lipoprotein lipase and chylomicrons, is induced by peroxisome proliferator-activated receptor-gamma. Mol Endocrinol 22 2496 2504
86. SchmidtSFJorgensenMChenYNielsenRSandelinA 2011 Cross species comparison of C/EBPalpha and PPARgamma profiles in mouse and human adipocytes reveals interdependent retention of binding sites. BMC Genomics 12 152
87. GravesRATontonozPSpiegelmanBM 1992 Analysis of a tissue-specific enhancer: ARF6 regulates adipogenic gene expression. Mol Cell Biol 12 1202 1208
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 10
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- The Glycobiome Reveals Mechanisms of Pentose and Hexose Co-Utilization in Bacteria
- Global Mapping of Cell Type–Specific Open Chromatin by FAIRE-seq Reveals the Regulatory Role of the NFI Family in Adipocyte Differentiation
- Genetic Determinants of Serum Testosterone Concentrations in Men
- MicroRNA Expression and Regulation in Human, Chimpanzee, and Macaque Brains