Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis
Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.
Vyšlo v časopise:
Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis. PLoS Genet 7(10): e32767. doi:10.1371/journal.pgen.1002345
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002345
Souhrn
Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.
Zdroje
1. BrummerECastanedaERestrepoA 1993 Paracoccidioidomycosis: an update. Clin Microbiol Rev 6 89 117
2. MartinezR 2010 Paracoccidioidomycosis: the dimension of the problem of a neglected disease. Rev Soc Bras Med Trop 43 480
3. WankeBLonderoAT 1994 Epidemiology and paracoccidioidomycosis infection. FrancoMLacazCdSRestrepo-MorenoADel NegroG Paracoccidioidomycosis Boca Raton CRC Press 109 120
4. HotezPJBottazziMEFranco-ParedesCAultSKPeriagoMR 2008 The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis 2 e300 doi:10.1371/journal.pntd.0000300
5. SaubolleMAMcKellarPPSusslandD 2007 Epidemiologic, clinical, and diagnostic aspects of coccidioidomycosis. J Clin Microbiol 45 26 30
6. RestrepoAMcEwenJGCastanedaE 2001 The habitat of Paracoccidioides brasiliensis: how far from solving the riddle? Med Mycol 39 233 241
7. Restrepo-MorenoA 2003 Paracoccidioidomycosis. DismukesWEPappasPGSobelJD Clinical Mycology New York, NY Oxford University Press
8. MedoffGPainterAKobayashiGS 1987 Mycelial- to yeast-phase transitions of the dimorphic fungi Blastomyces dermatitidis and Paracoccidioides brasiliensis. J Bacteriol 169 4055 4060
9. San-BlasGNino-VegaGIturriagaT 2002 Paracoccidioides brasiliensis and paracoccidioidomycosis: molecular approaches to morphogenesis, diagnosis, epidemiology, taxonomy and genetics. Med Mycol 40 225 242
10. SharptonTJStajichJERounsleySDGardnerMJWortmanJR 2009 Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res 19 1722 1731
11. RappleyeCAGoldmanWE 2006 Defining virulence genes in the dimorphic fungi. Annu Rev Microbiol 60 281 303
12. NemecekJCWuthrichMKleinBS 2006 Global control of dimorphism and virulence in fungi. Science 312 583 588
13. LeverySBToledoMSStrausAHTakahashiHK 1998 Structure elucidation of sphingolipids from the mycopathogen Paracoccidioides brasiliensis: an immunodominant beta-galactofuranose residue is carried by a novel glycosylinositol phosphorylceramide antigen. Biochemistry 37 8764 8775
14. VighLMarescaBHarwoodJL 1998 Does the membrane's physical state control the expression of heat shock and other genes? Trends Biochem Sci 23 369 374
15. Nino-VegaGACarreroLSan-BlasG 2004 Isolation of the CHS4 gene of Paracoccidioides brasiliensis and its accommodation in a new class of chitin synthases. Med Mycol 42 51 57
16. Nino-VegaGAMunroCASan-BlasGGoodayGWGowNA 2000 Differential expression of chitin synthase genes during temperature-induced dimorphic transitions in Paracoccidioides brasiliensis. Med Mycol 38 31 39
17. Ruiz-HerreraJSan-BlasG 2003 Chitin synthesis as target for antifungal drugs. Curr Drug Targets Infect Disord 3 77 91
18. FerreiraMEMarques EdosRMalavaziITorresIRestrepoA 2006 Transcriptome analysis and molecular studies on sulfur metabolism in the human pathogenic fungus Paracoccidioides brasiliensis. Mol Genet Genomics 276 450 463
19. NunesLRCosta de OliveiraRLeiteDBda SilvaVSdos Reis MarquesE 2005 Transcriptome analysis of Paracoccidioides brasiliensis cells undergoing mycelium-to-yeast transition. Eukaryot Cell 4 2115 2128
20. KleinBSTebbetsB 2007 Dimorphism and virulence in fungi. Curr Opin Microbiol 10 314 319
21. MatuteDRMcEwenJGPucciaRMontesBASan-BlasG 2006 Cryptic speciation and recombination in the fungus Paracoccidioides brasiliensis as revealed by gene genealogies. Mol Biol Evol 23 65 73
22. CarvalhoKCGanikoLBatistaWLMoraisFVMarquesER 2005 Virulence of Paracoccidioides brasiliensis and gp43 expression in isolates bearing known PbGP43 genotype. Microbes Infect 7 55 65
23. TeixeiraMMTheodoroRCde CarvalhoMJFernandesLPaesHC 2009 Phylogenetic analysis reveals a high level of speciation in the Paracoccidioides genus. Mol Phylogenet Evol 52 273 283
24. MontoyaAEMorenoMNRestrepoAMcEwenJG 1997 Electrophoretic karyotype of clinical isolates of Paracoccidioides brasiliensis. Fungal Genet Biol 21 223 227
25. SoaresCMMadlunEEda SilvaSPPereiraMFelipeMS 1995 Characterization of Paracoccidioides brasiliensis isolates by random amplified polymorphic DNA analysis. J Clin Microbiol 33 505 507
26. PucciaRMcEwenJGCisalpinoPS 2008 Diversity in Paracoccidioides brasiliensis. The PbGP43 gene as a genetic marker. Mycopathologia 165 275 287
27. BochnerBRGadzinskiPPanomitrosE 2001 Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11 1246 1255
28. DruzhininaISSchmollMSeibothBKubicekCP 2006 Global carbon utilization profiles of wild-type, mutant, and transformant strains of Hypocrea jecorina. Appl Environ Microbiol 72 2126 2133
29. TanzerMMArstHNSkalchunesARCoffinMDarveauxBA 2003 Global nutritional profiling for mutant and chemical mode-of-action analysis in filamentous fungi. Funct Integr Genomics 3 160 170
30. JaffeDBButlerJGnerreSMauceliELindblad-TohK 2003 Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res 13 91 96
31. HaasBJDelcherALWortmanJRSalzbergSL 2004 DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinformatics 20 3643 3646
32. DaboussiMJCapyP 2003 Transposable elements in filamentous fungi. Annu Rev Microbiol 57 275 299
33. MariniMMZanforlinTSantosPCBarrosRRGuerraAC 2010 Identification and characterization of Tc1/mariner-like DNA transposons in genomes of the pathogenic fungi of the Paracoccidioides species complex. BMC Genomics 11 130
34. CardosoMATamborJHNobregaFG 2007 The mitochondrial genome from the thermal dimorphic fungus Paracoccidioides brasiliensis. Yeast 24 607 616
35. WuYYangJYangFLiuTLengW 2009 Recent dermatophyte divergence revealed by comparative and phylogenetic analysis of mitochondrial genomes. BMC Genomics 10 238
36. Salgado-SalazarCJonesLRRestrepoAMcEwenJG 2010 The human fungal pathogen Paracoccidioides brasiliensis (Onygenales: Ajellomycetaceae) is a complex of two species: phylogenetic evidence from five mitochondrial markers. Cladistics 26 613 624
37. JamesTYKauffFSchochCLMathenyPBHofstetterV 2006 Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443 818 822
38. StajichJEWilkeSKAhrenDAuCHBirrenBW 2010 Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci U S A 107 11889 11894
39. ConesaAGotzSGarcia-GomezJMTerolJTalonM 2005 Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21 3674 3676
40. CantarelBLCoutinhoPMRancurelCBernardTLombardV 2009 The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37 D233 238
41. KuninVOuzounisCA 2003 GeneTRACE-reconstruction of gene content of ancestral species. Bioinformatics 19 1412 1416
42. BenolielBArraesFBReisVCSiqueiraSJParachinNS 2005 Hydrolytic enzymes in Paracoccidioides brasiliensis—ecological aspects. Genet Mol Res 4 450 461
43. MartinezDBerkaRMHenrissatBSaloheimoMArvasM 2008 Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26 553 560
44. KarpPDPaleySMKrummenackerMLatendresseMDaleJM 2009 Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform 11 40 79
45. MonodMCapocciaSLechenneBZauggCHoldomM 2002 Secreted proteases from pathogenic fungi. Int J Med Microbiol 292 405 419
46. RawlingsNDMortonFRBarrettAJ 2006 MEROPS: the peptidase database. Nucleic Acids Res 34 D270 272
47. SimsAHDunn-ColemanNSRobsonGDOliverSG 2004 Glutamic protease distribution is limited to filamentous fungi. FEMS Microbiol Lett 239 95 101
48. O'DonoghueAJMahonCSGoetzDHO'MalleyJMGallagherDM 2008 Inhibition of a secreted glutamic peptidase prevents growth of the fungus Talaromyces emersonii. J Biol Chem 283 29186 29195
49. BendtsenJDNielsenHvon HeijneGBrunakS 2004 Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340 783 795
50. HungCYSeshanKRYuJJSchallerRXueJ 2005 A metalloproteinase of Coccidioides posadasii contributes to evasion of host detection. Infect Immun 73 6689 6703
51. YeungKSeitzTLiSJanoschPMcFerranB 1999 Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401 173 177
52. HanksSKHunterT 1995 Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9 576 596
53. ZhengJTrafnyEAKnightonDRXuongNHTaylorSS 1993 2.2 A refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. Acta Crystallogr D Biol Crystallogr 49 362 365
54. CostaMBorgesCLBailaoAMMeirellesGVMendoncaYA 2007 Transcriptome profiling of Paracoccidioides brasiliensis yeast-phase cells recovered from infected mice brings new insights into fungal response upon host interaction. Microbiology 153 4194 4207
55. FelipeMSAndradeRVArraesFBNicolaAMMaranhaoAQ 2005 Transcriptional profiles of the human pathogenic fungus Paracoccidioides brasiliensis in mycelium and yeast cells. J Biol Chem 280 24706 24714
56. GoldmanGHdos Reis MarquesEDuarte RibeiroDCde Souza BernardesLAQuiapinAC 2003 Expressed sequence tag analysis of the human pathogen Paracoccidioides brasiliensis yeast phase: identification of putative homologues of Candida albicans virulence and pathogenicity genes. Eukaryot Cell 2 34 48
57. SantosJLShiozakiK 2001 Fungal histidine kinases. Sci STKE 2001 re1
58. BiswasKRiegerKJMorschhauserJ 2003 Functional analysis of CaRAP1, encoding the Repressor/activator protein 1 of Candida albicans. Gene 307 151 158
59. LiuHKohlerJFinkGR 1994 Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266 1723 1726
60. RooneyPJKleinBS 2004 Sequence elements necessary for transcriptional activation of BAD1 in the yeast phase of Blastomyces dermatitidis. Eukaryot Cell 3 785 794
61. SchulzBBanuettFDahlMSchlesingerRSchaferW 1990 The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60 295 306
62. LiDKolattukudyPE 1995 Cloning and expression of cDNA encoding a protein that binds a palindromic promoter element essential for induction of fungal cutinase by plant cutin. J Biol Chem 270 11753 11756
63. PineLPeacockCL 1958 Studies on the growth of Histoplasma capsulatum. IV. Factors influencing conversion of the mycelial phase to the yeast phase. J Bacteriol 75 167 174
64. YamaguchiH 1975 Control of dimorphism in Candida albicans by zinc: effect on cell morphology and composition. J Gen Microbiol 86 370 372
65. GalaganJECalvoSECuomoCMaLJWortmanJR 2005 Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438 1105 1115
66. LiWMetinBWhiteTCHeitmanJ 2010 Organization and evolutionary trajectory of the mating type (MAT) locus in dermatophyte and dimorphic fungal pathogens. Eukaryot Cell 9 46 58
67. TorresIGarciaAMHernandezOGonzalezAMcEwenJG 2009 Presence and expression of the mating type locus in Paracoccidioides brasiliensis isolates. Fungal Genet Biol 47 373 380
68. MalikSBPightlingAWStefaniakLMSchurkoAMLogsdonJMJr 2007 An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS ONE 3 e2879 doi:10.1371/journal.pone.0002879
69. KrokenSGlassNLTaylorJWYoderOCTurgeonBG 2003 Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A 100 15670 15675
70. KhaldiNSeifuddinFTTurnerGHaftDNiermanWC 2010 SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47 736 741
71. BokJWKellerNP 2004 LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3 527 535
72. BokJWNoordermeerDKaleSPKellerNP 2006 Secondary metabolic gene cluster silencing in Aspergillus nidulans. Mol Microbiol 61 1636 1645
73. WebsterRHSilA 2008 Conserved factors Ryp2 and Ryp3 control cell morphology and infectious spore formation in the fungal pathogen Histoplasma capsulatum. Proc Natl Acad Sci U S A 105 14573 14578
74. VisbalGAlvarezAMorenoBSan-BlasG 2003 S-Adenosyl-L-methionine inhibitors delta(24)-sterol methyltransferase and delta(24(28))-sterol methylreductase as possible agents against Paracoccidioides brasiliensis. Antimicrob Agents Chemother 47 2966 2970
75. PereiraMSongZSantos-SilvaLKRichardsMHNguyenTT 2010 Cloning, mechanistic and functional analysis of a fungal sterol C24-methyltransferase implicated in brassicasterol biosynthesis. Biochim Biophys Acta 1801 1163 1174
76. BowmanSMJ. FreeS 2006 The structure and synthesis of the fungal cell wall. BioEssays 28 799 808
77. Rodriguez-BritoSNino-VegaGSan-BlasG 2010 Caspofungin affects growth of Paracoccidioides brasiliensis in both morphological phases. Antimicrob Agents Chemother 54 5391 5394
78. KanetsunaFCarbonellLMAzumaIYamamuraY 1972 Biochemical studies on the thermal dimorphism of Paracoccidioides brasiliensis. J Bacteriol 110 208 218
79. San-BlasGNiño-VegaG 2004 Morphogenesis in other agents of systemic mycoses. Pathogenic Fungi: Structural Biology and Taxonomy Norfolk, England Caister Academic Press 167 220
80. ChoquerMBoccaraMGoncalvesIRSoulieMCVidal-CrosA 2004 Survey of the Botrytis cinerea chitin synthase multigenic family through the analysis of six euascomycetes genomes. Eur J Biochem 271 2153 2164
81. PucciaRCarmonaAKGesztesiJLJulianoLTravassosLR 1998 Exocellular proteolytic activity of Paracoccidioides brasiliensis: cleavage of components associated with the basement membrane. Med Mycol 36 345 348
82. CalichVLKashinoSS 1998 Cytokines produced by susceptible and resistant mice in the course of Paracoccidioides brasiliensis infection. Braz J Med Biol Res 31 615 623
83. AlmeidaAJMatuteDRCarmonaJAMartinsMTorresI 2007 Genome size and ploidy of Paracoccidioides brasiliensis reveals a haploid DNA content: flow cytometry and GP43 sequence analysis. Fungal Genet Biol 44 25 31
84. FelipeMSAndradeRVPetrofezaSSMaranhaoAQTorresFA 2003 Transcriptome characterization of the dimorphic and pathogenic fungus Paracoccidioides brasiliensis by EST analysis. Yeast 20 263 271
85. PierleoniAMartelliPLCasadioR 2008 PredGPI: a GPI-anchor predictor. BMC Bioinformatics 9 392
86. SamadAHuffEFCaiWSchwartzDC 1995 Optical mapping: a novel, single-molecule approach to genomic analysis. Genome Res 5 1 4
87. KurtzSPhillippyADelcherALSmootMShumwayM 2004 Versatile and open software for comparing large genomes. Genome Biol 5 R12
88. EllinghausDKurtzSWillhoeftU 2008 LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9 18
89. XuZWangH 2007 LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35 W265 268
90. JurkaJKapitonovVVPavlicekAKlonowskiPKohanyO 2005 Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110 462 467
91. KapitonovVVJurkaJ 2008 A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet 9 411 412 author reply 414
92. RicePLongdenIBleasbyA 2000 EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16 276 277
93. EddySR 2009 A new generation of homology search tools based on probabilistic inference. Genome Inform 23 205 211
94. FinnRDMistryJTateJCoggillPHegerA 2010 The Pfam protein families database. Nucleic Acids Res 38 D211 222
95. LiWGodzikA 2006 Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22 1658 1659
96. FrickeyTLupasA 2004 CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20 3702 3704
97. AltschulSFMaddenTLSchafferAAZhangJZhangZ 1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25 3389 3402
98. ArakakiAKHuangYSkolnickJ 2009 EFICAz2: enzyme function inference by a combined approach enhanced by machine learning. BMC Bioinformatics 10 107
99. KarpPDOuzounisCAMoore-KochlacsCGoldovskyLKaipaP 2005 Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33 6083 6089
100. LiLStoeckertCJJrRoosDS 2003 OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13 2178 2189
101. EdgarRC 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 1792 1797
102. TalaveraGCastresanaJ 2007 Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56 564 577
103. StamatakisA 2006 RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22 2688 2690
104. YangZ 1997 PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13 555 556
105. StoreyJDTibshiraniR 2003 Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100 9440 9445
106. GardesMBrunsTD 1993 ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2 113 118
107. WhiteTJBrunsTLeeSTaylorJW 1990 Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. InnisMAGelfandDHSninskyJJWhiteTJ PCR Protocols: A Guide to Methods and Applications New York Academic Press 315 322
108. EddySR 1998 Profile hidden Markov models. Bioinformatics 14 755 763
109. CrooksGEHonGChandoniaJMBrennerSE 2004 WebLogo: a sequence logo generator. Genome Res 14 1188 1190
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 10
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- The Glycobiome Reveals Mechanisms of Pentose and Hexose Co-Utilization in Bacteria
- Global Mapping of Cell Type–Specific Open Chromatin by FAIRE-seq Reveals the Regulatory Role of the NFI Family in Adipocyte Differentiation
- Genetic Determinants of Serum Testosterone Concentrations in Men
- MicroRNA Expression and Regulation in Human, Chimpanzee, and Macaque Brains