Transcriptome-Wide Binding Sites for Components of the Non-Poly(A) Termination Pathway: Nrd1, Nab3, and Sen1
RNA polymerase II synthesizes a diverse set of transcripts including both protein-coding and non-coding RNAs. One major difference between these two classes of transcripts is the mechanism of termination. Messenger RNA transcripts terminate downstream of the coding region in a process that is coupled to cleavage and polyadenylation reactions. Non-coding transcripts like Saccharomyces cerevisiae snoRNAs terminate in a process that requires the RNA–binding proteins Nrd1, Nab3, and Sen1. We report here the transcriptome-wide distribution of these termination factors. These data sets derived from in vivo protein–RNA cross-linking provide high-resolution definition of non-poly(A) terminators, identify novel genes regulated by attenuation of nascent transcripts close to the promoter, and demonstrate the widespread occurrence of Nrd1-bound 3′ antisense transcripts on genes that are poorly expressed. In addition, we show that Sen1 does not cross-link efficiently to many expected non-coding RNAs but does cross-link to the 3′ end of most pre–mRNA transcripts, suggesting an extensive role in mRNA 3′ end formation and/or termination.
Vyšlo v časopise:
Transcriptome-Wide Binding Sites for Components of the Non-Poly(A) Termination Pathway: Nrd1, Nab3, and Sen1. PLoS Genet 7(10): e32767. doi:10.1371/journal.pgen.1002329
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002329
Souhrn
RNA polymerase II synthesizes a diverse set of transcripts including both protein-coding and non-coding RNAs. One major difference between these two classes of transcripts is the mechanism of termination. Messenger RNA transcripts terminate downstream of the coding region in a process that is coupled to cleavage and polyadenylation reactions. Non-coding transcripts like Saccharomyces cerevisiae snoRNAs terminate in a process that requires the RNA–binding proteins Nrd1, Nab3, and Sen1. We report here the transcriptome-wide distribution of these termination factors. These data sets derived from in vivo protein–RNA cross-linking provide high-resolution definition of non-poly(A) terminators, identify novel genes regulated by attenuation of nascent transcripts close to the promoter, and demonstrate the widespread occurrence of Nrd1-bound 3′ antisense transcripts on genes that are poorly expressed. In addition, we show that Sen1 does not cross-link efficiently to many expected non-coding RNAs but does cross-link to the 3′ end of most pre–mRNA transcripts, suggesting an extensive role in mRNA 3′ end formation and/or termination.
Zdroje
1. BuratowskiS 2009 Progression through the RNA polymerase II CTD cycle. Mol Cell 36 541 546
2. RondonAGMischoHEProudfootNJ 2008 Terminating transcription in yeast: whether to be a ‘nerd’ or a ‘rat’. Nat Struct Mol Biol 15 775 776
3. VasiljevaLBuratowskiS 2006 Nrd1 interacts with the nuclear exosome for 3′ processing of RNA polymerase II transcripts. Mol Cell 21 239 248
4. GudipatiRKVillaTBoulayJLibriD 2008 Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice. Nat Struct Mol Biol 15 786 794
5. UrsicDChinchillaKFinkelJSCulbertsonMR 2004 Multiple protein/protein and protein/RNA interactions suggest roles for yeast DNA/RNA helicase Sen1p in transcription, transcription-coupled DNA repair and RNA processing. Nucleic Acids Res 32 2441 2452
6. VasiljevaLKimMMutschlerHBuratowskiSMeinhartA 2008 The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat Struct Mol Biol 15 795 804
7. CarrollKLGhirlandoRAmesJMCordenJL 2007 Interaction of yeast RNA-binding proteins Nrd1 and Nab3 with RNA polymerase II terminator elements. RNA 13 361 373
8. CarrollKLPradhanDAGranekJAClarkeNDCordenJL 2004 Identification of cis elements directing termination of yeast nonpolyadenylated snoRNA transcripts. Mol Cell Biol 24 6241 6252
9. ArigoJTEylerDECarrollKLCordenJL 2006 Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol Cell 23 841 851
10. ThiebautMKisseleva-RomanovaERougemailleMBoulayJLibriD 2006 Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol Cell 23 853 864
11. ArigoJTCarrollKLAmesJMCordenJL 2006 Regulation of yeast NRD1 expression by premature transcription termination. Mol Cell 21 641 651
12. KuehnerJNBrowDA 2008 Regulation of a eukaryotic gene by GTP-dependent start site selection and transcription attenuation. Mol Cell 31 201 211
13. JenksMHO'RourkeTWReinesD 2008 Properties of an intergenic terminator and start site switch that regulate IMD2 transcription in yeast. Mol Cell Biol 28 3883 3893
14. KopcewiczKAO'RourkeTWReinesD 2007 Metabolic regulation of IMD2 transcription and an unusual DNA element that generates short transcripts. Mol Cell Biol 27 2821 2829
15. ThiebautMColinJNeilHJacquierASeraphinB 2008 Futile cycle of transcription initiation and termination modulates the response to nucleotide shortage in S. cerevisiae. Mol Cell 31 671 682
16. SteinmetzEJConradNKBrowDACordenJL 2001 RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature 413 327 331
17. DeMariniDJWineyMUrsicDWebbFCulbertsonMR 1992 SEN1, a positive effector of tRNA-splicing endonuclease in Saccharomyces cerevisiae. Mol Cell Biol 12 2154 2164
18. HafnerMLandthalerMBurgerLKhorshidMHausserJ 2010 Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141 129 141
19. TagwerkerCFlickKCuiMGuerreroCDouY 2006 A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivocross-linking. Mol Cell Proteomics 5 737 748
20. WlotzkaWKudlaGGrannemanSTollerveyD 2011 The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO J 30 1790 1803
21. GrannemanSKudlaGPetfalskiETollerveyD 2009 Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proc Natl Acad Sci U S A 106 9613 9618
22. JamonnakNCreamerTDarbyMSchaughencyPWheelanSCordenJ 2011 Yeast Nrd1, Nab3 and Sen1 transcriptome-wide binding maps suggest multiple roles in post-transcriptional RNA processing. RNA in press
23. KimHEricksonBLuoWSewardDGraberJH 2010 Gene-specific RNA polymerase II phosphorylation and the CTD code. Nat Struct Mol Biol 17 1279 1286
24. JiHJiangHMaWJohnsonDSMyersRM 2008 An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 26 1293 1300
25. CrooksGEHonGChandoniaJMBrennerSE 2004 WebLogo: a sequence logo generator. Genome Res 14 1188 1190
26. BaileyTLElkanC 1994 Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2 28 36
27. HoganDJRiordanDPGerberAPHerschlagDBrownPO 2008 Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol 6 e255 doi:10.1371/journal.pbio.0060255
28. ConradNKWilsonSMSteinmetzEJPatturajanMBrowDA 2000 A yeast heterogeneous nuclear ribonucleoprotein complex associated with RNA polymerase II. Genetics 154 557 571
29. HomannORJohnsonAD 2010 MochiView: versatile software for genome browsing and DNA motif analysis. BMC Biol 8 49
30. KimMVasiljevaLRandoOJZhelkovskyAMooreC 2006 Distinct pathways for snoRNA and mRNA termination. Mol Cell 24 723 734
31. SteinmetzEJWarrenCLKuehnerJNPanbehiBAnsariAZ 2006 Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol Cell 24 735 746
32. XuZWeiWGagneurJPerocchiFClauder-MunsterS 2009 Bidirectional promoters generate pervasive transcription in yeast. Nature 457 1033 1037
33. NeilHMalabatCd'Aubenton-CarafaYXuZSteinmetzLM 2009 Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 457 1038 1042
34. WyersFRougemailleMBadisGRousselleJCDufourME 2005 Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121 725 737
35. SadowskiMDichtlBHubnerWKellerW 2003 Independent functions of yeast Pcf11p in pre-mRNA 3′ end processing and in transcription termination. EMBO J 22 2167 2177
36. SinghNMaZGemmillTWuXDefiglioH 2009 The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway. Mol Cell 36 255 266
37. HonorineRMosrin-HuamanCHervouet-CosteNLibriDRahmouniAR 2010 Nuclear mRNA quality control in yeast is mediated by Nrd1 co-transcriptional recruitment, as revealed by the targeting of Rho-induced aberrant transcripts. Nucleic Acids Res
38. ChurchmanLSWeissmanJS 2011 Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469 368 373
39. NagalakshmiUWangZWaernKShouCRahaD 2008 The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320 1344 1349
40. HouseleyJLaCavaJTollerveyD 2006 RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7 529 539
41. SteinmetzEJNgSBClouteJPBrowDA 2006 cis- and trans-Acting determinants of transcription termination by yeast RNA polymerase II. Mol Cell Biol 26 2688 2696
42. AllmangCKufelJChanfreauGMitchellPPetfalskiE 1999 Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18 5399 5410
43. van HoofALennertzPParkerR 2000 Yeast exosome mutants accumulate 3′-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol Cell Biol 20 441 452
44. MartensJALapradeLWinstonF 2004 Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429 571 574
45. HongayCFGrisafiPLGalitskiTFinkGR 2006 Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell 127 735 745
46. UhlerJPHertelCSvejstrupJQ 2007 A role for noncoding transcription in activation of the yeast PHO5 gene. Proc Natl Acad Sci U S A 104 8011 8016
47. CamblongJBeyrouthyNGuffantiESchlaepferGSteinmetzLM 2009 Trans-acting antisense RNAs mediate transcriptional gene cosuppression in S. cerevisiae. Genes Dev 23 1534 1545
48. CamblongJIglesiasNFickentscherCDieppoisGStutzF 2007 Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 131 706 717
49. BerrettaJPinskayaMMorillonA 2008 A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S. cerevisiae. Genes Dev 22 615 626
50. GaschAPSpellmanPTKaoCMCarmel-HarelOEisenMB 2000 Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11 4241 4257
51. NedeaEHeXKimMPootoolalJZhongG 2003 Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3′-ends. J Biol Chem 278 33000 33010
52. NedeaENalbantDXiaDTheoharisNTSuterB 2008 The Glc7 phosphatase subunit of the cleavage and polyadenylation factor is essential for transcription termination on snoRNA genes. Mol Cell 29 577 587
53. KawauchiJMischoHBragliaPRondonAProudfootNJ 2008 Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination. Genes Dev 22 1082 1092
54. MischoHEGomez-GonzalezBGrzechnikPRondonAGWeiW 2011 Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 41 21 32
55. RondonAGMischoHEKawauchiJProudfootNJ 2009 Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae. Mol Cell 36 88 98
56. ZenklusenDLarsonDRSingerRH 2008 Single-RNA counting reveals alternative modes of gene expression in yeast. Nat Struct Mol Biol 15 1263 1271
57. LuoWJohnsonAWBentleyDL 2006 The role of Rat1 in coupling mRNA 3′-end processing to transcription termination: implications for a unified allosteric-torpedo model. Genes Dev 20 954 965
58. MeierhoferDWangXHuangLKaiserP 2008 Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res 7 4566 4576
59. GentlemanRCCareyVJBatesDMBolstadBDettlingM 2004 Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5 R80
60. LangmeadBTrapnellCPopMSalzbergSL 2009 Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10 R25
61. EdgarRDomrachevMLashAE 2002 Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30 207 210
62. KeoghMCBuratwskiS 2004 Using chromatin immunoprecipitation to map cotranscriptional mRNA processing in Saccharomyces cerevisiae. Methods Mol Biol 257 1 16
63. MayerALidschreiberMSiebertMLeikeKSodingJ 2010 Uniform transitions of the general RNA polymerase II transcription complex. Nat Struct Mol Biol 17 1272 1278
64. MnaimnehSDavierwalaAPHaynesJMoffatJPengWT 2004 Exploration of essential gene functions via titratable promoter alleles. Cell 118 31 44
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2011 Číslo 10
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- The Glycobiome Reveals Mechanisms of Pentose and Hexose Co-Utilization in Bacteria
- Global Mapping of Cell Type–Specific Open Chromatin by FAIRE-seq Reveals the Regulatory Role of the NFI Family in Adipocyte Differentiation
- Genetic Determinants of Serum Testosterone Concentrations in Men
- MicroRNA Expression and Regulation in Human, Chimpanzee, and Macaque Brains