#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Mutator Suppression and Escape from Replication Error–Induced Extinction in Yeast


Cells rely on a network of conserved pathways to govern DNA replication fidelity. Loss of polymerase proofreading or mismatch repair elevates spontaneous mutation and facilitates cellular adaptation. However, double mutants are inviable, suggesting that extreme mutation rates exceed an error threshold. Here we combine alleles that affect DNA polymerase δ (Pol δ) proofreading and mismatch repair to define the maximal error rate in haploid yeast and to characterize genetic suppressors of mutator phenotypes. We show that populations tolerate mutation rates 1,000-fold above wild-type levels but collapse when the rate exceeds 10−3 inactivating mutations per gene per cell division. Variants that escape this error-induced extinction (eex) rapidly emerge from mutator clones. One-third of the escape mutants result from second-site changes in Pol δ that suppress the proofreading-deficient phenotype, while two-thirds are extragenic. The structural locations of the Pol δ changes suggest multiple antimutator mechanisms. Our studies reveal the transient nature of eukaryotic mutators and show that mutator phenotypes are readily suppressed by genetic adaptation. This has implications for the role of mutator phenotypes in cancer.


Vyšlo v časopise: Mutator Suppression and Escape from Replication Error–Induced Extinction in Yeast. PLoS Genet 7(10): e32767. doi:10.1371/journal.pgen.1002282
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002282

Souhrn

Cells rely on a network of conserved pathways to govern DNA replication fidelity. Loss of polymerase proofreading or mismatch repair elevates spontaneous mutation and facilitates cellular adaptation. However, double mutants are inviable, suggesting that extreme mutation rates exceed an error threshold. Here we combine alleles that affect DNA polymerase δ (Pol δ) proofreading and mismatch repair to define the maximal error rate in haploid yeast and to characterize genetic suppressors of mutator phenotypes. We show that populations tolerate mutation rates 1,000-fold above wild-type levels but collapse when the rate exceeds 10−3 inactivating mutations per gene per cell division. Variants that escape this error-induced extinction (eex) rapidly emerge from mutator clones. One-third of the escape mutants result from second-site changes in Pol δ that suppress the proofreading-deficient phenotype, while two-thirds are extragenic. The structural locations of the Pol δ changes suggest multiple antimutator mechanisms. Our studies reveal the transient nature of eukaryotic mutators and show that mutator phenotypes are readily suppressed by genetic adaptation. This has implications for the role of mutator phenotypes in cancer.


Zdroje

1. FriedbergECWalkerGCSiedeWWoodRDSchultzRA 2006 DNA Repair and Mutagenesis. Washington, D.C. ASM Press

2. McCullochSDKunkelTA 2008 The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 18 148 161

3. IyerRRPluciennikABurdettVModrichPL 2006 DNA mismatch repair: functions and mechanisms. Chem Rev 106 302 323

4. Reha-KrantzLJ 2010 DNA polymerase proofreading: Multiple roles maintain genome stability. Biochim Biophys Acta 1804 1049 1063

5. de VisserJA 2002 The fate of microbial mutators. Microbiology 148 1247 1252

6. GiraudARadmanMMaticITaddeiF 2001 The rise and fall of mutator bacteria. Curr Opin Microbiol 4 582 585

7. SturtevantAH 1937 Essays on evolution. I. On the effects of selection on mutation rate. Q Rev Biol 12 464 467

8. DenamurEMaticI 2006 Evolution of mutation rates in bacteria. Mol Microbiol 60 820 827

9. DrakeJWCharlesworthBCharlesworthDCrowJF 1998 Rates of spontaneous mutation. Genetics 148 1667 1686

10. ElenaSFLenskiRE 2003 Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4 457 469

11. ChaoLCoxEC 1983 Competition between high and low mutating strains of Escherichia coli. Evolution 37 125 134

12. SniegowskiPDGerrishPJLenskiRE 1997 Evolution of high mutation rates in experimental populations of E. coli. Nature 387 703 705

13. MaoEFLaneLLeeJMillerJH 1997 Proliferation of mutators in a cell population. J Bacteriol 179 417 422

14. GiraudAMaticITenaillonOClaraARadmanM 2001 Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291 2606 2608

15. NilssonAIKugelbergEBergOGAnderssonDI 2004 Experimental adaptation of Salmonella typhimurium to mice. Genetics 168 1119 1130

16. Notley-McRobbLSeetoSFerenciT 2002 Enrichment and elimination of mutY mutators in Escherichia coli populations. Genetics 162 1055 1062

17. FunchainPYeungAStewartJLLinRSlupskaMM 2000 The consequences of growth of a mutator strain of Escherichia coli as measured by loss of function among multiple gene targets and loss of fitness. Genetics 154 959 970

18. TröbnerWPiechockiR 1984 Selection against hypermutability in Escherichia coli during long term evolution. Mol Gen Genet 198 177 178

19. SchaaperRMCornacchioR 1992 An Escherichia coli dnaE mutation with suppressor activity toward mutator mutD5. J Bacteriol 174 1974 1982

20. FijalkowskaIJSchaaperRM 1995 Effects of Escherichia coli dnaE antimutator alleles in a proofreading-deficient mutD5 strain. J Bacteriol 177 5979 5986

21. LoebLASpringgateCFBattulaN 1974 Errors in DNA replication as a basis of malignant changes. Cancer Res 34 2311 2321

22. LoebLABielasJHBeckmanRA 2008 Cancers exhibit a mutator phenotype: clinical implications. Cancer Res 68 3551 3557

23. BielasJHLoebKRRubinBPTrueLDLoebLA 2006 Human cancers express a mutator phenotype. Proc Natl Acad Sci USA 103 18238 18242

24. GoldsbyRELawrenceNAHaysLEOlmstedEAChenX 2001 Defective DNA polymerase-δ proofreading causes cancer susceptibility in mice. Nat Med 7 638 639

25. AlbertsonTMOgawaMBugniJMHaysLEChenY 2009 DNA polymerase ε and δ proofreading suppress discrete mutator and cancer phenotypes in mice. Proc Natl Acad Sci USA 106 17101 17104

26. GoldsbyREHaysLEChenXOlmstedEASlaytonWB 2002 High incidence of epithelial cancers in mice deficient for DNA polymerase δ proofreading. Proc Natl Acad Sci USA 99 15560 15565

27. WeiKKucherlapatiREdelmannW 2002 Mouse models for human DNA mismatch-repair gene defects. Trends Mol Med 8 346 353

28. PeltomäkiP 2005 Lynch syndrome genes. Fam Cancer 4 227 232

29. SimonMGiotLFayeG 1991 The 3′ to 5′ exonuclease activity located in the DNA polymerase δ subunit of Saccharomyces cerevisiae is required for accurate replication. EMBO J 10 2165 2170

30. MorrisonABellJBKunkelTASuginoA 1991 Eukaryotic DNA polymerase amino acid sequence required for 3′ → 5′ exonuclease activity. Proc Natl Acad Sci USA 88 9473 9477

31. WilliamsonMSGameJCFogelS 1985 Meiotic gene conversion mutants in Saccharomyces cerevisiae. I. Isolation and characterization of pms1-1 and pms1-2. Genetics 110 609 646

32. ReenanRAKolodnerRD 1992 Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Genetics 132 975 985

33. ProllaTAChristieDMLiskayRM 1994 Dual requirement in yeast DNA mismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene. Mol Cell Biol 14 407 415

34. StrandMProllaTALiskayRMPetesTD 1993 Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365 274 276

35. DesaiMMFisherDSMurrayAW 2007 The speed of evolution and maintenance of variation in asexual populations. Curr Biol 17 385 394

36. ThompsonDADesaiMMMurrayAW 2006 Ploidy controls the success of mutators and nature of mutations during budding yeast evolution. Curr Biol 16 1581 1590

37. WlochDMSzafraniecKBortsRHKoronaR 2001 Direct estimate of the mutation rate and the distribution of fitness effects in the yeast Saccharomyces cerevisiae. Genetics 159 441 452

38. ZeylCde VisserJAGM 2001 Estimates of the rate and distribution of fitness effects of spontaneous mutation in Saccharomyces cerevisiae. Genetics 157 53 61

39. ZeylCMizeskoMde VisserJAGM 2001 Mutational meltdown in laboratory yeast populations. Evolution 55 909 917

40. MorrisonAJohnsonALJohnstonLHSuginoA 1993 Pathway correcting DNA replication errors in Saccharomyces cerevisiae. EMBO J 12 1467 1473

41. TranHTGordeninDAResnickMA 1999 The 3′→5′ exonucleases of DNA polymerases δ and ε and the 5′→3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol Cell Biol 19 2000 2007

42. GreeneCNJinks-RobertsonS 2001 Spontaneous frameshift mutations in Saccharomyces cerevisiae: accumulation during DNA replication and removal by proofreading and mismatch repair activities. Genetics 159 65 75

43. BoekeJDLaCrouteFFinkGR 1984 A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197 345 346

44. BernadABlancoLLazaroJMMartinGSalasM 1989 A conserved 3′→5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59 219 228

45. ShevelevIVHübscherU 2002 The 3′–5′ exonucleases. Nat Rev Mol Cell Biol 3 364 376

46. MorrisonASuginoA 1994 The 3′→5′ exonucleases of both DNA polymerases δ and ε participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol Gen Genet 242 289 296

47. MarsischkyGTFilosiNKaneMFKolodnerR 1996 Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev 10 407 420

48. JohnsonREKovvaliGKPrakashLPrakashS 1996 Requirement of the yeast MSH3 and MSH6 genes for MSH2-dependent genomic stability. J Biol Chem 271 7285 7288

49. AlaniE 1996 The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. Mol Cell Biol 16 5604 5615

50. SokolskyTAlaniE 2000 EXO1 and MSH6 are high-copy suppressors of conditional mutations in the MSH2 mismatch repair gene of Saccharomyces cerevisiae. Genetics 155 589 599

51. HawkJDStefanovicLBoyerJCPetesTDFarberRA 2005 Variation in efficiency of DNA mismatch repair at different sites in the yeast genome. Proc Natl Acad Sci USA 102 8639 8643

52. JinYHGargPStithCMAl-RefaiHSterlingJF 2005 The multiple biological roles of the 3′→5′ exonuclease of Saccharomyces cerevisiae DNA polymerase δ require switching between the polymerase and exonuclease domains. Mol Cell Biol 25 461 471

53. SchaaperRM 1993 Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem 268 23762 23765

54. PavlovYIShcherbakovaPVRogozinIB 2006 Roles of DNA polymerases in replication, repair, and recombination in eukaryotes. Int Rev Cytol 255 41 132

55. GiaeverGChuAMNiLConnellyCRilesL 2002 Functional profiling of the Saccharomyces cerevisiae genome. Nature 418 387 391

56. WinzelerEAShoemakerDDAstromoffALiangHAndersonK 1999 Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285 901 906

57. GoodmanMFCreightonSBloomLBPetruskaJ 1993 Biochemical basis of DNA replication fidelity. Crit Rev Biochem Mol Biol 28 83 126

58. DattaASchmeitsJLAminNSLauPJMyungK 2000 Checkpoint-dependent activation of mutagenic repair in Saccharomyces cerevisiae pol3-01 mutants. Mol Cell 6 593 603

59. YuLPena CastilloLMnaimnehSHughesTRBrownGW 2006 A survey of essential gene function in the yeast cell division cycle. Mol Biol Cell 17 4736 4747

60. OoiSLPanXPeyserBDYePMeluhPB 2006 Global synthetic-lethality analysis and yeast functional profiling. Trends Genet 22 56 63

61. BooneCBusseyHAndrewsBJ 2007 Exploring genetic interactions and networks with yeast. Nat Rev Genet 8 437 449

62. FijalkowskaIJSchaaperRM 1996 Mutants in the Exo I motif of Escherichia coli dnaQ: defective proofreading and inviability due to error catastrophe. Proc Natl Acad Sci USA 93 2856 2861

63. SliwaPKluzJKoronaR 2004 Mutational load and the transition between diploidy and haploidy in experimental populations of the yeast Saccharomyces cerevisiae. Genetica 121 285 293

64. DelneriDHoyleDCGkargkasKCrossEJMRashB 2008 Identification and characterization of high-flux-control genes of yeast through competition analyses in continuous cultures. Nat Genet 40 113 117

65. DaeeDLMertzTMShcherbakovaPV 2010 A cancer-associated DNA polymerase δ variant modeled in yeast causes a catastrophic increase in genomic instability. Proc Natl Acad Sci USA 107 157 162

66. TreutingPMAlbertsonTMPrestonBD 2010 Case series: acute tumor lysis syndrome in mutator mice with disseminated lymphoblastic lymphoma. Toxicol Pathol 38 476 485

67. SzafraniecKBortsRHKoronaR 2001 Environmental stress and mutational load in diploid strains of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 98 1107 1112

68. HillenmeyerMEFungEWildenhainJPierceSEHoonS 2008 The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320 362 365

69. GuZSteinmetzLMGuXScharfeCDavisRW 2003 Role of duplicate genes in genetic robustness against null mutations. Nature 421 63 66

70. KafriRLevyMPilpelY 2006 The regulatory utilization of genetic redundancy through responsive backup circuits. Proc Natl Acad Sci USA 103 11653 11658

71. HarrisonRPappBPalCOliverSGDelneriD 2007 Plasticity of genetic interactions in metabolic networks of yeast. Proc Natl Acad Sci USA 104 2307 2312

72. WagnerA 2000 Robustness against mutations in genetic networks of yeast. Nat Genet 24 355 361

73. RutherfordSLLindquistS 1998 Hsp90 as a capacitor for morphological evolution. Nature 396 336 342

74. SwanMKJohnsonREPrakashLPrakashSAggarwalAK 2009 Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase δ. Nat Struct Mol Biol 16 979 986

75. AlbertsonTMPrestonBD 2006 DNA replication fidelity: proofreading in trans. Curr Biol 16 R209 211

76. TrujilloKMSungP 2001 DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50·Mre11 complex. J Biol Chem 276 35458 35464

77. UnkIHaracskaLPrakashSPrakashL 2001 3′-Phosphodiesterase and 3′→5′ exonuclease activities of yeast Apn2 protein and requirement of these activities for repair of oxidative DNA damage. Mol Cell Biol 21 1656 1661

78. BardwellAJBardwellLTomkinsonAEFriedbergEC 1994 Specific cleavage of model recombination and repair intermediates by the yeast Rad1-Rad10 DNA endonuclease. Science 265 2082 2085

79. Bastin-ShanowerSAFrickeWMMullenJRBrillSJ 2003 The mechanism of Mus81-Mms4 cleavage site selection distinguishes it from the homologous endonuclease Rad1-Rad10. Mol Cell Biol 23 3487 3496

80. BoddyMNGaillardPHMcDonaldWHShanahanPYatesJR3rd 2001 Mus81-Eme1 are essential components of a Holliday junction resolvase. Cell 107 537 548

81. ChenXBMelchionnaRDenisCMGaillardPHBlasinaA 2001 Human Mus81-associated endonuclease cleaves Holliday junctions in vitro. Mol Cell 8 1117 1127

82. KaliramanVMullenJRFrickeWMBastin-ShanowerSABrillSJ 2001 Functional overlap between Sgs1-Top3 and the Mms4-Mus81 endonuclease. Genes Dev 15 2730 2740

83. DrakeJWAllenEFForsbergSAPreparataRMGreeningEO 1969 Genetic control of mutation rates in bacteriophage T4. Nature 221 1128 1132

84. Reha-KrantzLJ 1988 Amino acid changes coded by bacteriophage T4 DNA polymerase mutator mutants. Relating structure to function. J Mol Biol 202 711 724

85. Reha-KrantzLJ 1995 Use of genetic analyses to probe structure, function, and dynamics of bacteriophage T4 DNA polymerase. Methods Enzymol 262 323 331

86. Reha-KrantzLJWongC 1996 Selection of bacteriophage T4 antimutator DNA polymerases: a link between proofreading and sensitivity to phosphonoacetic acid. Mutat Res 350 9 16

87. HwangYTZuccolaHJLuQHwangCB 2004 A point mutation within conserved region VI of herpes simplex virus type 1 DNA polymerase confers altered drug sensitivity and enhances replication fidelity. J Virol 78 650 657

88. HallJDCoenDMFisherBLWeisslitzMRandallS 1984 Generation of genetic diversity in herpes simplex virus: an antimutator phenotype maps to the DNA polymerase locus. Virology 132 26 37

89. GibbsJSChiouHCBastowKFChengYCCoenDM 1988 Identification of amino acids in herpes simplex virus DNA polymerase involved in substrate and drug recognition. Proc Natl Acad Sci USA 85 6672 6676

90. LohEChoeJLoebLA 2007 Highly tolerated amino acid substitutions increase the fidelity of Escherichia coli DNA polymerase I. J Biol Chem 282 12201 12209

91. FijalkowskaIJDunnRLSchaaperRM 1993 Mutants of Escherichia coli with increased fidelity of DNA replication. Genetics 134 1023 1030

92. SchaaperRM 1996 Suppressors of Escherichia coli mutT: antimutators for DNA replication errors. Mutat Res 350 17 23

93. JinYHObertRBurgersPMKunkelTAResnickMA 2001 The 3′→5′ exonuclease of DNA polymerase δ can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc Natl Acad Sci USA 98 5122 5127

94. GargPStithCMSabouriNJohanssonEBurgersPM 2004 Idling by DNA polymerase δ maintains a ligatable nick during lagging-strand DNA replication. Genes Dev 18 2764 2773

95. StithCMSterlingJResnickMAGordeninDABurgersPM 2008 Flexibility of eukaryotic Okazaki fragment maturation through regulated strand displacement synthesis. J Biol Chem 283 34129 34140

96. PavlovYIMakiSMakiHKunkelTA 2004 Evidence for interplay among yeast replicative DNA polymerases alpha, delta and epsilon from studies of exonuclease and polymerase active site mutations. BMC Biol 2 11

97. PrestonBDAlbertsonTMHerrAJ 2010 DNA replication fidelity and cancer. Semin Cancer Biol 20 281 293

98. ShermanF 2002 Getting started with yeast. GuthrieCFinkGR Part B: Guide to Yeast Genetics and Molecular and Cell Biology San Diego Academic Press 3 41 Volume 350 ed

99. ToynJHGunyuzluPLWhiteWHThompsonLAHollisGF 2000 A counterselection for the tryptophan pathway in yeast: 5-fluoroanthranilic acid resistance. Yeast 16 553 560

100. RoseMDNovickPThomasJHBotsteinDFinkGR 1987 A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60 237 243

101. GiotLSimonMDuboisCFayeG 1995 Suppressors of thermosensitive mutations in the DNA polymerase δ gene of Saccharomyces cerevisiae. Mol Gen Genet 246 212 222

102. GietzRDSuginoA 1988 New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74 527 534

103. BrachmannCBDaviesACostGJCaputoELiJ 1998 Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14 115 132

104. WachABrachatAPohlmannRPhilippsenP 1994 New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10 1793 1808

105. VenkatesanRNHsuJJLawrenceNAPrestonBDLoebLA 2005 Mutator phenotypes caused by substitution at a conserved motif A residue in eukaryotic DNA polymerase δ. J Biol Chem 281 4486 4494

106. GuldenerUHeckSFielderTBeinhauerJHegemannJH 1996 A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24 2519 2524

107. PavlovYINewlonCSKunkelTA 2002 Yeast origins establish a strand bias for replicational mutagenesis. Mol Cell 10 207 213

108. LangGIMurrayAW 2008 Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics 178 67 82

109. RoscheWAFosterPL 2000 Determining mutation rates in bacterial populations. Methods 20 4 17

110. ZhengQ 2002 Statistical and algorithmic methods for fluctuation analysis with SALVADOR as an implementation. Math Biosci 176 237 252

111. MorganCLewisPD 2006 iMARS--mutation analysis reporting software: an analysis of spontaneous cII mutation spectra. Mutat Res 603 15 26

112. DrakeJW 1991 A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA 88 7160 7164

113. GroganDWCarverGTDrakeJW 2001 Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 98 7928 7933

114. DrakeJW 2009 Avoiding dangerous missense: thermophiles display especially low mutation rates. PLoS Genet 5 e1000520 doi:10.1371/journal.pgen.1000520

115. CroyleMLWooALLingrelJB 1997 Extensive random mutagenesis analysis of the Na+/K+-ATPase alpha subunit identifies known and previously unidentified amino acid residues that alter ouabain sensitivity--implications for ouabain binding. Eur J Biochem 248 488 495

116. FallowsDKentRBNelsonDLEmanuelJRLevensonR 1987 Chromosome-mediated transfer of the murine Na,K-ATPase alpha subunit confers ouabain resistance. Mol Cell Biol 7 2985 2987

117. PriceEMLingrelJB 1988 Structure-function relationships in the Na,K-ATPase alpha subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme. Biochemistry 27 8400 8408

118. CantleyLGCunhaMJZhouXM 1994 Ouabain-resistant OR6 cells express the murine alpha 1-subunit of the Na,K-ATPase with a T797-I797 substitution. J Biol Chem 269 15358 15361

119. DhillonKKSidorovaJMAlbertsonTMAndersonJBLadigesWC 2010 Divergent cellular phenotypes of human and mouse cells lacking the Werner syndrome RecQ helicase. DNA Repair 9 11 22

120. WangTS-FWongSWKornD 1989 Human DNA polymerase α: predicted functional domains and relationships with viral DNA polymerases. FASEB J 3 14 21

121. TranHTDegtyarevaNPGordeninDAResnickMA 1999 Genetic factors affecting the impact of DNA polymerase δ proofreading activity on mutation avoidance in yeast. Genetics 152 47 59

122. HadjimarcouMIKokoskaRJPetesTDReha-KrantzLJ 2001 Identification of a mutant DNA polymerase δ in Saccharomyces cerevisiae with an antimutator phenotype for frameshift mutations. Genetics 158 177 186

123. TianWHwangYTLuQHwangCBC 2009 Finger domain mutation affects enzyme activity, DNA replication efficiency, and fidelity of an exonuclease-deficient DNA polymerase of herpes simplex virus type 1. J Virol 83 7194 7201

124. LynchMSungWMorrisKCoffeyNLandryCR 2008 A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci USA 105 9272 9277

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#