A Broad Requirement for TLS Polymerases η and κ, and Interacting Sumoylation and Nuclear Pore Proteins, in Lesion Bypass during Embryogenesis
Translesion synthesis (TLS) polymerases are specialized DNA polymerases capable of inserting nucleotides opposite DNA lesions that escape removal by dedicated DNA repair pathways. TLS polymerases allow cells to complete DNA replication in the presence of damage, thereby preventing checkpoint activation, genome instability, and cell death. Here, we characterize functional knockouts for polh-1 and polk-1, encoding the Caenorhabditis elegans homologs of the Y-family TLS polymerases η and κ. POLH-1 acts at many different DNA lesions as it protects cells against a wide range of DNA damaging agents, including UV, γ-irradiation, cisplatin, and methyl methane sulphonate (MMS). POLK-1 acts specifically but redundantly with POLH-1 in protection against methylation damage. Importantly, both polymerases play a prominent role early in embryonic development to allow fast replication of damaged genomes. Contrary to observations in mammalian cells, we show that neither POLH-1 nor POLK-1 is required for homologous recombination (HR) repair of DNA double-strand breaks. A genome-wide RNAi screen for genes that protect the C. elegans genome against MMS–induced DNA damage identified novel components in DNA damage bypass in the early embryo. Our data suggest SUMO-mediated regulation of both POLH-1 and POLK-1, and point towards a previously unrecognized role of the nuclear pore in regulating TLS.
Vyšlo v časopise:
A Broad Requirement for TLS Polymerases η and κ, and Interacting Sumoylation and Nuclear Pore Proteins, in Lesion Bypass during Embryogenesis. PLoS Genet 8(6): e32767. doi:10.1371/journal.pgen.1002800
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002800
Souhrn
Translesion synthesis (TLS) polymerases are specialized DNA polymerases capable of inserting nucleotides opposite DNA lesions that escape removal by dedicated DNA repair pathways. TLS polymerases allow cells to complete DNA replication in the presence of damage, thereby preventing checkpoint activation, genome instability, and cell death. Here, we characterize functional knockouts for polh-1 and polk-1, encoding the Caenorhabditis elegans homologs of the Y-family TLS polymerases η and κ. POLH-1 acts at many different DNA lesions as it protects cells against a wide range of DNA damaging agents, including UV, γ-irradiation, cisplatin, and methyl methane sulphonate (MMS). POLK-1 acts specifically but redundantly with POLH-1 in protection against methylation damage. Importantly, both polymerases play a prominent role early in embryonic development to allow fast replication of damaged genomes. Contrary to observations in mammalian cells, we show that neither POLH-1 nor POLK-1 is required for homologous recombination (HR) repair of DNA double-strand breaks. A genome-wide RNAi screen for genes that protect the C. elegans genome against MMS–induced DNA damage identified novel components in DNA damage bypass in the early embryo. Our data suggest SUMO-mediated regulation of both POLH-1 and POLK-1, and point towards a previously unrecognized role of the nuclear pore in regulating TLS.
Zdroje
1. CicciaAElledgeSJ 2010 The DNA damage response: making it safe to play with knives. Mol Cell 40 179 204 doi:10.1016/j.molcel.2010.09.019
2. NouspikelT 2009 DNA repair in mammalian cells : Nucleotide excision repair: variations on versatility. Cell Mol Life Sci 66 994 1009 doi:10.1007/s00018-009-8737-y
3. O'FarrellPHStumpffJSuTT 2004 Embryonic cleavage cycles: how is a mouse like a fly? Curr Biol 14 R35 R45
4. EncaladaSEMartinPRPhillipsJBLyczakRHamillDR 2000 DNA replication defects delay cell division and disrupt cell polarity in early Caenorhabditis elegans embryos. Developmental Biology 228 225 238 doi:10.1006/dbio.2000.9965
5. BrauchleMBaumerKGönczyP 2003 Differential activation of the DNA replication checkpoint contributes to asynchrony of cell division in C. elegans embryos. Curr Biol 13 819 827
6. HolwayAHKimS-HLa VolpeAMichaelWM 2006 Checkpoint silencing during the DNA damage response in Caenorhabditis elegans embryos. The Journal of Cell Biology 172 999 1008 doi:10.1083/jcb.200512136
7. AndersenPLXuFXiaoW 2008 Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res 18 162 173 doi:10.1038/cr.2007.114
8. PrakashSJohnsonREPrakashL 2005 Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 74 317 353 doi:10.1146/annurev.biochem.74.082803.133250
9. WatersLSMinesingerBKWiltroutMED'SouzaSWoodruffRV 2009 Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 73 134 154 doi:10.1128/MMBR.00034-08
10. JohnsonREKondratickCMPrakashSPrakashL 1999 hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285 263 265
11. KawamotoTArakiKSonodaEYamashitaYMHaradaK 2005 Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis. Mol Cell 20 793 799 doi:10.1016/j.molcel.2005.10.016
12. McIlwraithMJMcllwraithMJVaismanALiuYFanningE 2005 Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell 20 783 792 doi:10.1016/j.molcel.2005.10.001
13. KimS-HMichaelWM 2008 Regulated proteolysis of DNA polymerase eta during the DNA-damage response in C. elegans. Mol Cell 32 757 766 doi:10.1016/j.molcel.2008.11.016
14. HaracskaLPrakashLPrakashS 2002 Role of human DNA polymerase kappa as an extender in translesion synthesis. Proc Natl Acad Sci USA 99 16000 16005 doi:10.1073/pnas.252524999
15. CarlsonKDJohnsonREPrakashLPrakashSWashingtonMT 2006 Human DNA polymerase kappa forms nonproductive complexes with matched primer termini but not with mismatched primer termini. Proc Natl Acad Sci USA 103 15776 15781 doi:10.1073/pnas.0605785103
16. OgiTLehmannAR 2006 The Y-family DNA polymerase kappa (pol kappa) functions in mammalian nucleotide-excision repair. Nat Cell Biol 8 640 642 doi:10.1038/ncb1417
17. OgiTLimsirichaikulSOvermeerRMVolkerMTakenakaK 2010 Three DNA Polymerases, Recruited by Different Mechanisms, Carry Out NER Repair Synthesis in Human Cells. Mol Cell 37 714 727 doi:10.1016/j.molcel.2010.02.009
18. HaracskaLKondratickCMUnkIPrakashSPrakashL 2001 Interaction with PCNA is essential for yeast DNA polymerase eta function. Mol Cell 8 407 415
19. BienkoMGreenCMCrosettoNRudolfFZapartG 2005 Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310 1821 1824 doi:10.1126/science.1120615
20. KosarekJNWoodruffRVRivera-BegemanAGuoCD'SouzaS 2008 Comparative analysis of in vivo interactions between Rev1 protein and other Y-family DNA polymerases in animals and yeasts. DNA Repair 7 439 451 doi:10.1016/j.dnarep.2007.11.016
21. OhashiEHanafusaTKameiKSongITomidaJ 2009 Identification of a novel REV1-interacting motif necessary for DNA polymerase kappa function. Genes Cells 14 101 111 doi:10.1111/j.1365-2443.2008.01255.x
22. CuppenEGortEHazendonkEMuddeJvan de BeltJ 2007 Efficient target-selected mutagenesis in Caenorhabditis elegans: toward a knockout for every gene. Genome Res 17 649 658 doi:10.1101/gr.6080607
23. JohnsonREPrakashSPrakashL 1999 Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. Science 283 1001 1004
24. MasutaniCArakiMYamadaAKusumotoRNogimoriT 1999 Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. EMBO J 18 3491 3501 doi:10.1093/emboj/18.12.3491
25. McDonaldJPLevineASWoodgateR 1997 The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism. Genetics 147 1557 1568
26. AstinJWO'NeilNJKuwabaraPE 2008 Nucleotide excision repair and the degradation of RNA pol II by the Caenorhabditis elegans XPA and Rsp5 orthologues, RAD-3 and WWP-1. DNA Repair 7 267 280 doi:10.1016/j.dnarep.2007.10.004
27. LansHMarteijnJASchumacherBHoeijmakersJHJJansenG 2010 Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development. PLoS Genet 6 e1000941 doi:10.1371/journal.pgen.1000941
28. YoudsJLBarberLJWardJDCollisSJO'NeilNJ 2008 DOG-1 is the Caenorhabditis elegans BRIP1/FANCJ homologue and functions in interstrand cross-link repair. Mol Cell Biol 28 1470 1479 doi:10.1128/MCB.01641-07
29. RattrayAJStrathernJN 2005 Homologous recombination is promoted by translesion polymerase poleta. Mol Cell 20 658 659 doi:10.1016/j.molcel.2005.11.018
30. BoultonSJMartinJSPolanowskaJHillDEGartnerA 2004 BRCA1/BARD1 orthologs required for DNA repair in Caenorhabditis elegans. Curr Biol 14 33 39
31. ClejanIBoerckelJAhmedS 2006 Developmental modulation of nonhomologous end joining in Caenorhabditis elegans. Genetics 173 1301 1317 doi:10.1534/genetics.106.058628
32. ChenC-CGSimardMJTabaraHBrownellDRMcColloughJA 2005 A member of the polymerase beta nucleotidyltransferase superfamily is required for RNA interference in C. elegans. Curr Biol 15 378 383 doi:10.1016/j.cub.2005.01.009
33. PlasterkRH 1991 The origin of footprints of the Tc1 transposon of Caenorhabditis elegans. EMBO J 10 1919 1925
34. RoosWPKainaB 2012 DNA damage-induced apoptosis: From specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett doi:10.1016/j.canlet.2012.01.007
35. van HaaftenGRomeijnRPothofJKooleWMullendersLHF 2006 Identification of conserved pathways of DNA-damage response and radiation protection by genome-wide RNAi. Curr Biol 16 1344 1350 doi:10.1016/j.cub.2006.05.047
36. AltunZFHallDH 2009 Introduction to C. elegans anatomy. WormAtlas
37. SchumacherBHanazawaMLeeM-HNayakSVolkmannK 2005 Translational repression of C. elegans p53 by GLD-1 regulates DNA damage-induced apoptosis. Cell 120 357 368 doi:10.1016/j.cell.2004.12.009
38. StergiouLDoukoumetzidisKSendoelAHengartnerMO 2007 The nucleotide excision repair pathway is required for UV-C-induced apoptosis in Caenorhabditis elegans. Cell Death Differ 14 1129 1138 doi:10.1038/sj.cdd.4402115
39. EdgarLGMcGheeJD 1988 DNA synthesis and the control of embryonic gene expression in C. elegans. Cell 53 589 599
40. HolwayAHHungCMichaelWM 2005 Systematic, RNA-interference-mediated identification of mus-101 modifier genes in Caenorhabditis elegans. Genetics 169 1451 1460 doi:10.1534/genetics.104.036137
41. ZhangHSmolenGAPalmerRChristoforouAvan den HeuvelS 2004 SUMO modification is required for in vivo Hox gene regulation by the Caenorhabditis elegans Polycomb group protein SOP-2. Nat Genet 36 507 511 doi:10.1038/ng1336
42. GalyVMattajIWAskjaerP 2003 Caenorhabditis elegans nucleoporins Nup93 and Nup205 determine the limit of nuclear pore complex size exclusion in vivo. Mol Biol Cell 14 5104 5115 doi:10.1091/mbc.E03-04-0237
43. LeeD-HPfeiferGP 2008 Translesion synthesis of 7,8-dihydro-8-oxo-2′-deoxyguanosine by DNA polymerase eta in vivo. Mutat Res 641 19 26 doi:10.1016/j.mrfmmm.2008.02.006
44. HirotaKSonodaEKawamotoTMotegiAMasutaniC 2010 Simultaneous disruption of two DNA polymerases, Polη and Polζ, in Avian DT40 cells unmasks the role of Polη in cellular response to various DNA lesions. PLoS Genet 6 doi:10.1371/journal.pgen.1001151
45. AkagiJ-IMasutaniCKataokaYKanTOhashiE 2009 Interaction with DNA polymerase eta is required for nuclear accumulation of REV1 and suppression of spontaneous mutations in human cells. DNA Repair 8 585 599 doi:10.1016/j.dnarep.2008.12.006
46. ShacharSZivOAvkinSAdarSWittschiebenJ 2009 Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals. EMBO J 28 383 393 doi:10.1038/emboj.2008.281
47. ZivOGeacintovNNakajimaSYasuiALivnehZ 2009 DNA polymerase zeta cooperates with polymerases kappa and iota in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients. Proc Natl Acad Sci USA 106 11552 11557 doi:10.1073/pnas.0812548106
48. FuDCalvoJASamsonLD 2012 Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer 12 104 120 doi:10.1038/nrc3185
49. PalancadeBDoyeV 2008 Sumoylating and desumoylating enzymes at nuclear pores: underpinning their unexpected duties? Trends Cell Biol 18 174 183 doi:10.1016/j.tcb.2008.02.001
50. PalancadeBLiuXGarcia-RubioMAguileraAZhaoX 2007 Nucleoporins prevent DNA damage accumulation by modulating Ulp1-dependent sumoylation processes. Mol Biol Cell 18 2912 2923 doi:10.1091/mbc.E07-02-0123
51. NagaiSDubranaKTsai-PflugfelderMDavidsonMBRobertsTM 2008 Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322 597 602 doi:10.1126/science.1162790
52. BermejoRCapraTJossenRColosioAFrattiniC 2011 The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 146 233 246 doi:10.1016/j.cell.2011.06.033
53. StavruFHülsmannBBSpangAHartmannECordesVC 2006 NDC1: a crucial membrane-integral nucleoporin of metazoan nuclear pore complexes. The Journal of Cell Biology 173 509 519 doi:10.1083/jcb.200601001
54. BrennerS 1974 The genetics of Caenorhabditis elegans. Genetics 77 71 94
55. SempleJIGarcia-VerdugoRLehnerB 2010 Rapid selection of transgenic C. elegans using antibiotic resistance. Nat Methods 7 725 727 doi:10.1038/nmeth.1495
56. FukushigeTHendzelMJBazett-JonesDPMcGheeJD 1999 Direct visualization of the elt-2 gut-specific GATA factor binding to a target promoter inside the living Caenorhabditis elegans embryo. Proc Natl Acad Sci USA 96 11883 11888
57. PontierDBTijstermanM 2009 A robust network of double-strand break repair pathways governs genome integrity during C. elegans development. Curr Biol 19 1384 1388 doi:10.1016/j.cub.2009.06.045
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 6
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Rumors of Its Disassembly Have Been Greatly Exaggerated: The Secret Life of the Synaptonemal Complex at the Centromeres
- The NSL Complex Regulates Housekeeping Genes in
- Tipping the Balance in the Powerhouse of the Cell to “Protect” Colorectal Cancer
- Interplay between Synaptonemal Complex, Homologous Recombination, and Centromeres during Mammalian Meiosis