#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Divergence of the Yeast Transcription Factor Affects Sulfite Resistance


Changes in gene expression are commonly observed during evolution. However, the phenotypic consequences of expression divergence are frequently unknown and difficult to measure. Transcriptional regulators provide a mechanism by which phenotypic divergence can occur through multiple, coordinated changes in gene expression during development or in response to environmental changes. Yet, some changes in transcriptional regulators may be constrained by their pleiotropic effects on gene expression. Here, we use a genome-wide screen for promoters that are likely to have diverged in function and identify a yeast transcription factor, FZF1, that has evolved substantial differences in its ability to confer resistance to sulfites. Chimeric alleles from four Saccharomyces species show that divergence in FZF1 activity is due to changes in both its coding and upstream noncoding sequence. Between the two closest species, noncoding changes affect the expression of FZF1, whereas coding changes affect the expression of SSU1, a sulfite efflux pump activated by FZF1. Both coding and noncoding changes also affect the expression of many other genes. Our results show how divergence in the coding and promoter region of a transcription factor alters the response to an environmental stress.


Vyšlo v časopise: Divergence of the Yeast Transcription Factor Affects Sulfite Resistance. PLoS Genet 8(6): e32767. doi:10.1371/journal.pgen.1002763
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002763

Souhrn

Changes in gene expression are commonly observed during evolution. However, the phenotypic consequences of expression divergence are frequently unknown and difficult to measure. Transcriptional regulators provide a mechanism by which phenotypic divergence can occur through multiple, coordinated changes in gene expression during development or in response to environmental changes. Yet, some changes in transcriptional regulators may be constrained by their pleiotropic effects on gene expression. Here, we use a genome-wide screen for promoters that are likely to have diverged in function and identify a yeast transcription factor, FZF1, that has evolved substantial differences in its ability to confer resistance to sulfites. Chimeric alleles from four Saccharomyces species show that divergence in FZF1 activity is due to changes in both its coding and upstream noncoding sequence. Between the two closest species, noncoding changes affect the expression of FZF1, whereas coding changes affect the expression of SSU1, a sulfite efflux pump activated by FZF1. Both coding and noncoding changes also affect the expression of many other genes. Our results show how divergence in the coding and promoter region of a transcription factor alters the response to an environmental stress.


Zdroje

1. BergmannSIhmelsJBarkaiN 2004 Similarities and differences in genome-wide expression data of six organisms. PLoS Biol 2 e9 doi:10.1371/journal.pbio.0020009

2. LelandaisGTantyVGeneixCEtchebestCJacqC 2008 Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata. Genome Biol 9 R164

3. ChanETQuonGTChuaGBabakTTrochessetM 2009 Conservation of core gene expression in vertebrate tissues. J Biol 8 33

4. WhiteheadACrawfordD 2006 Variation within and among species in gene expression: raw material for evolution. Mol Ecol 15 1197 1211

5. FayJCMcCulloughHLSniegowskiPDEisenMB 2004 Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae. Genome Biol 5 R26

6. KhaitovichPWeissGLachmannMHellmannIEnardW 2004 A neutral model of transcriptome evolution. PLoS Biol 2 e132 doi:10.1371/journal.pbio.0020132

7. LemosBMeiklejohnCCaceresMHartlD 2005 Rates of divergence in gene expression profiles of primates, mice, and flies: stabilizing selection and variability among functional categories. Evolution 59 126 137

8. FayJCWittkoppPJ 2008 Evaluating the role of natural selection in the evolution of gene regulation. Heredity 100 191 199

9. WittkoppPJHaerumBKClarkAG 2008 Regulatory changes underlying expression differences within and between Drosophila species. Nat Genet 40 346 350

10. EmersonJJHsiehLSungHWangTHuangC 2010 Natural selection on cis and trans regulation in yeasts. Genome Res 20 826 836

11. IhmelsJBergmannSGerami-NejadMYanaiIMcClellanM 2005 Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 309 938 940

12. DonigerSWFayJC 2007 Frequent gain and loss of functional transcription factor binding sites. PLoS Comput Biol 3 e99 doi:10.1371/journal.pcbi.0030099

13. TsankovAMThompsonDASochaARegevARandoOJ 2010 The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol 8 e1000414 doi:10.1371/journal.pbio.1000414

14. SternDLOrgogozoV 2008 The loci of evolution: how predictable is genetic evolution? Evolution 62 2155 2177

15. YvertGBremRWhittleJAkeyJFossE 2003 Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet 35 57 64

16. BrownKMLandryCRHartlDLCavalieriD 2008 Cascading transcriptional effects of a naturally occurring frameshift mutation in Saccharomyces cerevisiae. Mol Ecol 17 2985 2997

17. KimHSHuhJFayJC 2009 Dissecting the pleiotropic consequences of a quantitative trait nucleotide. FEMS Yeast Res 9 713 722

18. RockmanMV 2012 The QTN program and the alleles that matter for evolution: all that's gold does not glitter. Evolution 66 1 17

19. BullardJHMostovoyYDudoitSBremRB 2010 Polygenic and directional regulatory evolution across pathways in Saccharomyces. Proc Natl Acad Sci U S A 107 5058 5063

20. FraserHBMosesAMSchadtEE 2010 Evidence for widespread adaptive evolution of gene expression in budding yeast. Proc Natl Acad Sci U S A 107 2977 2982

21. FraserHBBabakTTsangJZhouYZhangB 2011 Systematic detection of polygenic cis-regulatory evolution. PLoS Genet 7 e1002023 doi:10.1371/journal.pgen.1002023

22. WangXChamberlinHM 2002 Multiple regulatory changes contribute to the evolution of the Caenorhabditis lin-48 ovo gene. Genes Dev 16 2345 2349

23. McGregorAPOrgogozoVDelonIZanetJSrinivasanDG 2007 Morphological evolution through multiple cis-regulatory mutations at a single gene. Nature 448 587 590

24. JeongSRebeizMAndolfattoPWernerTTrueJ 2008 The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell 132 783 793

25. RebeizMPoolJEKassnerVAAquadroCFCarrollSB 2009 Stepwise modification of a modular enhancer underlies adaptation in a Drosophila population. Science 326 1663 1667

26. FrankelNErezyilmazDFMcGregorAPWangSPayreF 2011 Morphological evolution caused by many subtle-effect substitutions in regulatory DNA. Nature 474 598 603

27. LiYLiangHGuZLinZGuanW 2009 Detecting positive selection in the budding yeast genome. J Evol Biol 22 2430 2437

28. BirdCPStrangerBELiuMThomasDJIngleCE 2007 Fast-evolving noncoding sequences in the human genome. Genome Biol 8 R118

29. PollardKSSalamaSRKingBKernADDreszerT 2006 Forces shaping the fastest evolving regions in the human genome. PLoS Genet 2 e168 doi:10.1371/journal.pgen.0020168

30. PrabhakarSNoonanJPPääboSRubinEM 2006 Accelerated evolution of conserved noncoding sequences in humans. Science 314 786

31. PrabhakarSViselAAkiyamaJAShoukryMLewisKD 2008 Human-specific gain of function in a developmental enhancer. Science 321 1346 1350

32. PollardKSSalamaSRLambertNLambotMCoppensS 2006 An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443 167 172

33. SternDLOrgogozoV 2009 Is genetic evolution predictable? Science 323 746 751

34. CarrollSB 2008 Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134 25 36

35. SawyerSLMalikHS 2006 Positive selection of yeast nonhomologous end-joining genes and a retrotransposon conflict hypothesis. Proc Natl Acad Sci U S A 103 17614 17619

36. CasaloneEColellaCMDalySFontanaSTorricelliI 1994 Cloning and characterization of a sulphite-resistance gene of Saccharomyces cerevisiae. Yeast 10 1101 1110

37. AvramDLeidMBakalinskyAT 1999 Fzf1p of Saccharomyces cerevisiae is a positive regulator of SSU1 transcription and its first zinc finger region is required for DNA binding. Yeast 15 473 480

38. ParkHBakalinskyAT 2000 SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast 16 881 888

39. Pérez-OrtínJEQuerolAPuigSBarrioE 2002 Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res 12 1533 1539

40. Markova-RainaPPetrovD 2011 High sensitivity to aligner and high rate of false positives in the estimates of positive selection in the 12 Drosophila genomes. Genome Res 21 863 874

41. WongKMSuchardMAHuelsenbeckJP 2008 Alignment uncertainty and genomic analysis. Science 319 473 476

42. SchmidKYangZ 2008 The trouble with sliding windows and the selective pressure in BRCA1. PLoS ONE 3 e3746 doi:10.1371/journal.pone.0003746

43. RonaldJBremRWhittleJKruglyakL 2005 Local regulatory variation in Saccharomyces cerevisiae. PLoS Genet 1 e25 doi:10.1371/journal.pgen.0010025

44. GaschASpellmanPKaoCCarmel-HarelOEisenM 2000 Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11 4241 4257

45. GaschAWerner-WashburneM 2002 The genomics of yeast responses to environmental stress and starvation. Funct Integr Genomics 2 181 192

46. PontingCP 2011 What are the genomic drivers of the rapid evolution of PRDM9? Trends Genet 27 165 171

47. WrayGHahnMAbouheifEBalhoffJPizerM 2003 The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20 1377 1419

48. VenkataramSFayJC 2010 Is transcription factor binding site turnover a sufficient explanation for cis-regulatory sequence divergence? Genome Biol Evol 2 851 858

49. LynchVJMayGWagnerGP 2011 Regulatory evolution through divergence of a phosphoswitch in the transcription factor CEBPB. Nature 480 383 386

50. SarverADeRisiJ 2005 Fzf1p regulates an inducible response to nitrosative stress in Saccharomyces cerevisiae. Mol Biol Cell 16 4781 4791

51. OdomDTDowellRDJacobsenESGordonWDanfordTW 2007 Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat Genet 39 730 732

52. BornemanARGianoulisTAZhangZDYuHRozowskyJ 2007 Divergence of transcription factor binding sites across related yeast species. Science 317 815 819

53. SchmidtDWilsonMDBallesterBSchwaliePCBrownGD 2010 Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328 1036 1040

54. ZhouLMaXArbeitmanMNSunF 2009 Chromatin regulation and gene centrality are essential for controlling fitness pleiotropy in yeast. PLoS ONE 4 e8086 doi:10.1371/journal.pone.0008086

55. ParkHHwangY 2008 Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae. J Microbiol 46 542 548

56. BadisGChanETvan BakelHPena-CastilloLTilloD 2008 A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol Cell 32 878 887

57. YuasaNNakagawaYHayakawaMIimuraY 2004 Distribution of the sulfite resistance gene SSU1-R and the variation in its promoter region in wine yeasts. J Biosci Bioeng 98 394 397

58. KellisMPattersonNEndrizziMBirrenBLanderE 2003 Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423 241 254

59. PondSFrostSMuseS 2005 HyPhy: hypothesis testing using phylogenies. Bioinformatics 21 676 679

60. ThompsonJDGibsonTJPlewniakFJeanmouginFHigginsDG 1997 The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 4876 4882

61. EdgarRC 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 1792 1797

62. NotredameCHigginsDGHeringaJ 2000 T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302 205 217

63. KatohKKumaKTohHMiyataT 2005 MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33 511 518

64. LöytynojaAGoldmanN 2010 webPRANK: a phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinformatics 11 579

65. StoyeJ 1998 Multiple sequence alignment with the Divide-and-Conquer method. Gene 211 GC45 56

66. ComeronJ 1999 K-Estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics 15 763 764

67. WachABrachatAPöhlmannRPhilippsenP 1994 New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10 1793 1808

68. SikorskiRSHieterP 1989 A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122 19 27

69. ParkHLopezNIBakalinskyAT 1999 Use of sulfite resistance in Saccharomyces cerevisiae as a dominant selectable marker. Curr Genet 36 339 344

70. KimHSFayJC 2007 Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds. Proc Natl Acad Sci U S A 104 19387 19391

71. MageeL 1990 R2 measures based on Wald and likelihood ratio joint significance tests. American Statistician 44 250 253

72. HuangDWShermanBTLempickiRA 2009 Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4 44 57

73. BussereauFLafayJBolotin-FukuharaM 2004 Zinc finger transcriptional activators of yeasts. FEMS Yeast Res 4 445 458

74. Goto-YamamotoNKitanokShikiKYoshidaYSuzukiT 1998 SSU1-R, a sulfite resistance gene of wine yeast, is an allele of SSU1 with a different upstream sequence. J Ferment Bioeng 86 427 433

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#