Polymorphisms in the Mitochondrial Ribosome Recycling Factor Compromise Cell Respiratory Function and Increase Atorvastatin Toxicity
Mitochondrial translation, essential for synthesis of the electron transport chain complexes in the mitochondria, is governed by nuclear encoded genes. Polymorphisms within these genes are increasingly being implicated in disease and may also trigger adverse drug reactions. Statins, a class of HMG-CoA reductase inhibitors used to treat hypercholesterolemia, are among the most widely prescribed drugs in the world. However, a significant proportion of users suffer side effects of varying severity that commonly affect skeletal muscle. The mitochondria are one of the molecular targets of statins, and these drugs have been known to uncover otherwise silent mitochondrial mutations. Based on yeast genetic studies, we identify the mitochondrial translation factor MEF2 as a mediator of atorvastatin toxicity. The human ortholog of MEF2 is the Elongation Factor Gene (EF-G) 2, which has previously been shown to play a specific role in mitochondrial ribosome recycling. Using small interfering RNA (siRNA) silencing of expression in human cell lines, we demonstrate that the EF-G2mt gene is required for cell growth on galactose medium, signifying an essential role for this gene in aerobic respiration. Furthermore, EF-G2mt silenced cell lines have increased susceptibility to cell death in the presence of atorvastatin. Using yeast as a model, conserved amino acid variants, which arise from non-synonymous single nucleotide polymorphisms (SNPs) in the EF-G2mt gene, were generated in the yeast MEF2 gene. Although these mutations do not produce an obvious growth phenotype, three mutations reveal an atorvastatin-sensitive phenotype and further analysis uncovers a decreased respiratory capacity. These findings constitute the first reported phenotype associated with SNPs in the EF-G2mt gene and implicate the human EF-G2mt gene as a pharmacogenetic candidate gene for statin toxicity in humans.
Vyšlo v časopise:
Polymorphisms in the Mitochondrial Ribosome Recycling Factor Compromise Cell Respiratory Function and Increase Atorvastatin Toxicity. PLoS Genet 8(6): e32767. doi:10.1371/journal.pgen.1002755
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002755
Souhrn
Mitochondrial translation, essential for synthesis of the electron transport chain complexes in the mitochondria, is governed by nuclear encoded genes. Polymorphisms within these genes are increasingly being implicated in disease and may also trigger adverse drug reactions. Statins, a class of HMG-CoA reductase inhibitors used to treat hypercholesterolemia, are among the most widely prescribed drugs in the world. However, a significant proportion of users suffer side effects of varying severity that commonly affect skeletal muscle. The mitochondria are one of the molecular targets of statins, and these drugs have been known to uncover otherwise silent mitochondrial mutations. Based on yeast genetic studies, we identify the mitochondrial translation factor MEF2 as a mediator of atorvastatin toxicity. The human ortholog of MEF2 is the Elongation Factor Gene (EF-G) 2, which has previously been shown to play a specific role in mitochondrial ribosome recycling. Using small interfering RNA (siRNA) silencing of expression in human cell lines, we demonstrate that the EF-G2mt gene is required for cell growth on galactose medium, signifying an essential role for this gene in aerobic respiration. Furthermore, EF-G2mt silenced cell lines have increased susceptibility to cell death in the presence of atorvastatin. Using yeast as a model, conserved amino acid variants, which arise from non-synonymous single nucleotide polymorphisms (SNPs) in the EF-G2mt gene, were generated in the yeast MEF2 gene. Although these mutations do not produce an obvious growth phenotype, three mutations reveal an atorvastatin-sensitive phenotype and further analysis uncovers a decreased respiratory capacity. These findings constitute the first reported phenotype associated with SNPs in the EF-G2mt gene and implicate the human EF-G2mt gene as a pharmacogenetic candidate gene for statin toxicity in humans.
Zdroje
1. CoenenMJAntonickaHUgaldeCSasarmanFRossiR 2004 Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency. N Engl J Med 351 2080 2086
2. AntonickaHSasarmanFKennawayNGShoubridgeEA 2006 The molecular basis for tissue specificity of the oxidative phosphorylation deficiencies in patients with mutations in the mitochondrial translation factor EFG1. Hum Mol Genet 15 1835 1846
3. ValenteLTirantiVMarsanoRMMalfattiEFernandez-VizarraE 2007 Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu. Am J Hum Genet 80 44 58
4. AntonickaHOstergaardESasarmanFWeraarpachaiWWibrandF 2010 Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect. Am J Hum Genet 87 115 122
5. VladutiuGSimmonsZIsacksonPTarnopolskyMPeltierW 2006 Genetic risk factors associated with lipid-lowering drug-induced myopathies. Muscle Nerve 32 153 162
6. BaruffiniELodiT 2010 Construction and validation of a yeast model system for studying in vivo the susceptibility to nucleoside analogues of DNA polymerase gamma allelic variants. Mitochondrion 10 183 187
7. De PinieuxGChariotPAmmi-SaidMLouarnFLejoncJ 1996 Lipid-lowering drugs and mitochondrial function: effects of HMG-CoA reductase inhibitors on serum ubiquinone and blood lactate/pyruvate ratio. Br J Clin Pharmacol 42 333 337
8. WagnerBKKitamiTGilbertTJPeckDRamanathanA 2008 Large-scale chemical dissection of mitochondrial function. Nat Biotechnol 26 343 351
9. VladutiuG 2008 Genetic predisposition to statin myopathy. Curr Opin Rheumatol 20 648 655
10. BuettnerCDavisRBLeveilleSGMittlemanMAMukamalKJ 2008 Prevalence of musculoskeletal pain and statin use. J Gen Intern Med 23 1182 1186
11. PhillipsPSHaasRHBannykhSHathawaySGrayNL 2002 Statin-associated myopathy with normal creatine kinase levels. Ann Intern Med 137 581 585
12. TaySDiMauroSPangALaiPYapH 2008 Myotoxicity of lipid-lowering agents in a teenager with MELAS mutation. Pediatr Neurol 39 426 428
13. ChariotPAbadiaRAgnusDDananCGherardiRK 1993 Simvastatin-induced rhabdomyolysis followed by a MELAS syndrome. Am J Med 94 109 110
14. ThomasJELeeNThompsonP 2007 Statins provoking MELAS syndrome. A case report. Eur Neurol 57 232 235
15. RinaldiTDallabonaCFerreroIFrontaliLBolotin-FukuharaM 2010 Mitochondrial diseases and the role of the yeast models. FEMS Yeast Res 10 1006 1022
16. BarrientosA 2003 Yeast models of human mitochondrial diseases. IUBMB Life 55 83 95
17. SchwimmerCRakMLefebvre-LegendreLDuvezin-CaubetSPlaneG 2006 Yeast models of human mitochondrial diseases: from molecular mechanisms to drug screening. Biotechnol J 1 270 281
18. CallegariSMcKinnonRAAndrewsSde Barros LopesMA 2010 Atorvastatin-induced cell toxicity in yeast is linked to disruption of protein isoprenylation. FEMS Yeast Res 10 188 198
19. MacreadieIGJohnsonGSchlosserTMacreadiePI 2006 Growth inhibition of Candida species and Aspergillus fumigatus. FEMS Microbiol Lett 262 9 13
20. FowlerDMCooperSJStephanyJJHendonNNelsonS 2011 Suppression of statin effectiveness by copper and zinc in yeast and human cells. Mol Biosyst 7 533 544
21. TowpikJ 2005 Regulation of mitochondrial translation in yeast. Cell Mol Biol Lett 10 571 594
22. SmitsPSmeitinkJvan den HeuvelL 2010 Mitochondrial translation and beyond: Processes implicated in combined oxidative phosphorylation deficiencies. J Biomed Biotechnol 2010 1 24
23. TsuboiMMoritaHNozakiYAkamaKUedaT 2009 Ef-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis. Mol Cell 35 502 510
24. HammarsundMWilsonWCorcoranMMerupMEinhornS 2001 Identification and characterisation of two novel human mitochondrial elongation factor genes, hEFG2 and hEFG1, phylogenetically conserved through evolution. Hum Genet 109 542 550
25. GaoNZavialovAVEhrenbergMFrankJ 2007 Specific interaction between EF-G and RRF and its implication for GTP-dependent ribosome splitting into subunits. J Mol Biol 374 1345 1358
26. ChristianBHaqueESpremulliL 2009 Ribosome shifting or splitting: it is all up to the EF-G. Mol Cell 35 400 402
27. GiaeverGFlahertyPKummJProctorMNislowC 2004 Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci U S A 101 793 798
28. LumPYArmourCDStepaniantsSBCavetGWolfMK 2004 Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116 121 137
29. HillenmeyerMEEricsonEDavisRWNislowCKollerD 2010 Systematic analysis of genome-wide fitness data in yeast reveals novel gene function and drug action. Genome Biol 11 1 17
30. CallegariSMcKinnonRAAndrewsSde Barros LopesMA 2011 The MEF2 gene is essential for yeast longevity, with a dual role in cell respiration and maintenance of mitochondrial membrane potential. FEBS Lett 585 1140 1146
31. VerganiLPrescottARHoltIJ 2000 Rhabdomyosarcoma ρ0 cells: isolation and characterization of a mitochondrial DNA depleted cell line with ‘muscle-like’ properties. Neuromuscul Disord 10 454 459
32. NishimotoTTozawaRAmanoYWadaTImuraY 2003 Comparing myotoxic effects of squalene synthase inhibitor T-91485, and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors in human myocytes. Biochem Pharmacol 66 2133 2139
33. ArakiMMotojimaK 2008 Hydrophobic statins induce autophagy in cultured human rhabdomyosarcoma cells. Biochem Biophys Res Commun 367 462 467
34. RorbachJRichterRWesselsHJWydroMPekalskiM 2008 The human mitochondrial ribosome recycling factor is essential for cell viability. Nucleic Acids Res 36 5787 5799
35. WittmannCKimHMJohnGHeinzleE 2003 Characterization and application of an optical sensor for quantification of dissolved O2 in shake-flasks. Biotechnol Lett 25 377 380
36. Rodríguez-EnríquezSJuárezORodríguez-ZavalaJSMoreno-SánchezR 2001 Multisite control of the Crabtree effect in ascites hepatoma cells. Eur J Biochem 268 2512 2519
37. MarroquinLDHynesJDykensJAJamiesonJDWillY 2007 Circumventing the crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol Sci 97 539 547
38. TaylorSDZhangHEatonJSRodehefferMSLebedevaMA 2005 The conserved Mec1/Rad53 nuclear checkpoint pathway regulates mitochondrial DNA copy number in Saccharomyces cerevisiae. Mol Biol Cell 16 3010 3018
39. KaufmannPTorokMZahnoAWaldhauserKMBrechtK 2006 Toxicity of statins on rat skeletal muscle mitochondria. Cell Mol Life Sci 63 2415 2425
40. LiuZButowRA 2006 Mitochondrial retrograde signaling. Annu Rev Genet 40 159 185
41. BordoliLKieferFArnoldKBenkertPBatteyJ 2009 Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4 1 13
42. HanssonSSinghRGudkovATLiljasALoganDT 2005 Crystal structure of a mutant elongation factor G trapped with a GTP analogue. FEBS Lett 579 4492 4497
43. KaiserJ 2008 DNA sequencing: a plan to capture human diversity in 1000 genomes. Science 319 395
44. KingMPAttardiG 1989 Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246 500 503
45. ReitzerLJWiceBMKennellD 1979 Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254 2669 2676
46. SirventPBordenaveSVermaelenMRoelsBVassortG 2005 Simvastatin induces impairement in skeletal muscle while heart is protected. Biochem Biophys Res Commun 338 1426 1434
47. SirventPMercierJVassortGLacampagneA 2005 Simvastatin triggers mitochondria-induced Ca2+ signaling alteration in skeletal muscle. Biochem Biophys Res Commun 329 1067 1075
48. SirventPFabreOBordenaveSHillaire-BuysDRaynaud De MauvergerE 2012 Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins. Toxicol Appl Pharmacol 259 263 268
49. OhJBanMRMiskieBAPollexRLHegeleRA 2007 Genetic determinants of statin intolerance. Lipids Health Dis 6 1 5
50. ChongPSeegerJDFranklinC 2001 Clinically relevant differences between the statins: implications for therapeutic selection. Am J Med 111 390 400
51. SchickBALaaksonenRFrohlichJJLehtimakiTHumphriesKH 2007 Decreased skeletal muscle mitochondrial DNA in patients treated with high-dose simvastatin. Clin Pharmacol Ther 81 650 653
52. BergmanMSalmanHDjaldettiMAlexandrovaSPunskyI 2003 Ultrastructure of mouse striated muscle fibers following pravastatin administration. J Muscle Res Cell Motil 24 417 420
53. WestwoodFRScottRCMarsdenAMBigleyARandallK 2008 Rosuvastatin: Characterization of induced myopathy in the rat. Toxicol Pathol 36 345 352
54. WinzelerEAShoemakerDDAstromoffALiangHAndersonK 1999 Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285 901 906
55. StoriciFDurhamCLGordeninDAResnickMA 2003 Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. Proc Natl Acad Sci U S A 100 14994 14999
56. MeloFFeytmansE 1998 Assessing protein structures with a non-local atomic interaction energy. J Mol Biol 277 1141 1152
57. LaskowskiRAMacArthurMWMossDThorntonJM 1993 PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26 283 291
58. HuangXMillerW 1991 A time-efficient, linear-space local similarity algorithm. Adv Appl Math 12 337 357
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 6
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Rumors of Its Disassembly Have Been Greatly Exaggerated: The Secret Life of the Synaptonemal Complex at the Centromeres
- The NSL Complex Regulates Housekeeping Genes in
- Tipping the Balance in the Powerhouse of the Cell to “Protect” Colorectal Cancer
- Interplay between Synaptonemal Complex, Homologous Recombination, and Centromeres during Mammalian Meiosis