#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Global Regulatory Functions of the Endoribonuclease III in Gene Expression


RNA turnover plays an important role in both virulence and adaptation to stress in the Gram-positive human pathogen Staphylococcus aureus. However, the molecular players and mechanisms involved in these processes are poorly understood. Here, we explored the functions of S. aureus endoribonuclease III (RNase III), a member of the ubiquitous family of double-strand-specific endoribonucleases. To define genomic transcripts that are bound and processed by RNase III, we performed deep sequencing on cDNA libraries generated from RNAs that were co-immunoprecipitated with wild-type RNase III or two different cleavage-defective mutant variants in vivo. Several newly identified RNase III targets were validated by independent experimental methods. We identified various classes of structured RNAs as RNase III substrates and demonstrated that this enzyme is involved in the maturation of rRNAs and tRNAs, regulates the turnover of mRNAs and non-coding RNAs, and autoregulates its synthesis by cleaving within the coding region of its own mRNA. Moreover, we identified a positive effect of RNase III on protein synthesis based on novel mechanisms. RNase III–mediated cleavage in the 5′ untranslated region (5′UTR) enhanced the stability and translation of cspA mRNA, which encodes the major cold-shock protein. Furthermore, RNase III cleaved overlapping 5′UTRs of divergently transcribed genes to generate leaderless mRNAs, which constitutes a novel way to co-regulate neighboring genes. In agreement with recent findings, low abundance antisense RNAs covering 44% of the annotated genes were captured by co-immunoprecipitation with RNase III mutant proteins. Thus, in addition to gene regulation, RNase III is associated with RNA quality control of pervasive transcription. Overall, this study illustrates the complexity of post-transcriptional regulation mediated by RNase III.


Vyšlo v časopise: Global Regulatory Functions of the Endoribonuclease III in Gene Expression. PLoS Genet 8(6): e32767. doi:10.1371/journal.pgen.1002782
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002782

Souhrn

RNA turnover plays an important role in both virulence and adaptation to stress in the Gram-positive human pathogen Staphylococcus aureus. However, the molecular players and mechanisms involved in these processes are poorly understood. Here, we explored the functions of S. aureus endoribonuclease III (RNase III), a member of the ubiquitous family of double-strand-specific endoribonucleases. To define genomic transcripts that are bound and processed by RNase III, we performed deep sequencing on cDNA libraries generated from RNAs that were co-immunoprecipitated with wild-type RNase III or two different cleavage-defective mutant variants in vivo. Several newly identified RNase III targets were validated by independent experimental methods. We identified various classes of structured RNAs as RNase III substrates and demonstrated that this enzyme is involved in the maturation of rRNAs and tRNAs, regulates the turnover of mRNAs and non-coding RNAs, and autoregulates its synthesis by cleaving within the coding region of its own mRNA. Moreover, we identified a positive effect of RNase III on protein synthesis based on novel mechanisms. RNase III–mediated cleavage in the 5′ untranslated region (5′UTR) enhanced the stability and translation of cspA mRNA, which encodes the major cold-shock protein. Furthermore, RNase III cleaved overlapping 5′UTRs of divergently transcribed genes to generate leaderless mRNAs, which constitutes a novel way to co-regulate neighboring genes. In agreement with recent findings, low abundance antisense RNAs covering 44% of the annotated genes were captured by co-immunoprecipitation with RNase III mutant proteins. Thus, in addition to gene regulation, RNase III is associated with RNA quality control of pervasive transcription. Overall, this study illustrates the complexity of post-transcriptional regulation mediated by RNase III.


Zdroje

1. CarpousisAJLuisiBFMcDowallKJ 2009 Endonucleolytic initiation of mRNA decay in Escherichia coli. Prog Mol Biol Transl Sci 85 91 135

2. AndersonKLDunmanPM 2009 Messenger RNA Turnover Processes in Escherichia coli, Bacillus subtilis, and Emerging Studies in Staphylococcus aureus. Int J Microbiol 2009 525491

3. CondonCBechhoferDH 2011 Regulated RNA stability in the Gram positives. Curr Opin Microbiol 14 148 154

4. BelascoJG 2010 All things must pass: contrasts and commonalities in eukaryotic and bacterial mRNA decay. Nat Rev Mol Cell Biol 11 467 478

5. MaderUZigLKretschmerJHomuthGPutzerH 2008 mRNA processing by RNases J1 and J2 affects Bacillus subtilis gene expression on a global scale. Mol Microbiol 70 183 196

6. ShahbabianKJamalliAZigLPutzerH 2009 RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. EMBO J 28 3523 3533

7. BechhoferDH 2009 Messenger RNA decay and maturation in Bacillus subtilis. Prog Mol Biol Transl Sci 85 231 273

8. KimVNHanJSiomiMC 2009 Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10 126 139

9. JiX 2008 The mechanism of RNase III action: how dicer dices. Curr Top Microbiol Immunol 320 99 116

10. GanJTropeaJEAustinBPCourtDLWaughDS 2006 Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III. Cell 124 355 366

11. ZhangHKolbFAJaskiewiczLWesthofEFilipowiczW 2004 Single processing center models for human Dicer and bacterial RNase III. Cell 118 57 68

12. PertzevAVNicholsonAW 2006 Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III. Nucleic Acids Res 34 3708 3721

13. SunWLiGNicholsonAW 2004 Mutational analysis of the nuclease domain of Escherichia coli ribonuclease III. Identification of conserved acidic residues that are important for catalytic function in vitro. Biochemistry 43 13054 13062

14. LiHNicholsonAW 1996 Defining the enzyme binding domain of a ribonuclease III processing signal. Ethylation interference and hydroxyl radical footprinting using catalytically inactive RNase III mutants. EMBO J 15 1421 1433

15. SrivastavaRKMiczakAApirionD 1990 Maturation of precursor 10Sa RNA in Escherichia coli is a two-step process: the first reaction is catalyzed by RNase III in presence of Mn2+. Biochimie 72 791 802

16. BardwellJCRegnierPChenSMNakamuraYGrunberg-ManagoM 1989 Autoregulation of RNase III operon by mRNA processing. EMBO J 8 3401 3407

17. WagnerEGAltuviaSRombyP 2002 Antisense RNAs in bacteria and their genetic elements. Adv Genet 46 361 398

18. DarfeuilleFUnosonCVogelJWagnerEG 2007 An antisense RNA inhibits translation by competing with standby ribosomes. Mol Cell 26 381 392

19. SteadMBMarshburnSMohantyBKMitraJCastilloLP 2011 Analysis of Escherichia coli RNase E and RNase III activity in vivo using tiling microarrays. Nucleic Acids Res 39 3188 3203

20. DurandSGiletLBessièresPNicolasPCondonC 2012 Three essential ribonucleases- RNase Y, J1, and III-control the abundance of a majority of Bacillus subtilis mRNAs. PLoS Genet 8 e1002520 doi:10.1371/journal.pgen.1002520

21. EDChylinskiKSharmaCMGonzalesKChaoY CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 47 602 607

22. HerskovitzMABechhoferDH 2000 Endoribonuclease RNase III is essential in Bacillus subtilis. Mol Microbiol 38 1027 1033

23. LiuYDongJWuNGaoYZhangX 2011 The production of extracellular proteins is regulated by ribonuclease III via two different pathways in Staphylococcus aureus. PLoS ONE 6 e20554 doi:10.1371/journal.pone.0020554

24. HuntzingerEBoissetSSaveanuCBenitoYGeissmannT 2005 Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J 24 824 835

25. ChevalierCBoissetSRomillyCMasquidaBFechterP 2010 Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation. PLoS Pathog 6 e1000809 doi:10.1371/journal.ppat.1000809

26. BoissetSGeissmannTHuntzingerEFechterPBendridiN 2007 Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 21 1353 1366

27. ChevalierCHuntzingerEFechterPBoissetSVandeneschF 2008 Staphylococcus aureus endoribonuclease III purification and properties. Methods Enzymol 447 309 327

28. LasaIToledo-AranaADobinAVillanuevaMde los MozosIR 2011 Genome-wide antisense transcription drives mRNA processing in bacteria. Proc Natl Acad Sci U S A 108 20172 20177

29. GanJShawGTropeaJEWaughDSCourtDL 2008 A stepwise model for double-stranded RNA processing by ribonuclease III. Mol Microbiol 67 143 154

30. DasguptaSFernandezLKameyamaLInadaTNakamuraY 1998 Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the Escherichia coli endoribonuclease RNase III-the effect of dsRNA binding on gene expression. Mol Microbiol 28 629 640

31. SunWNicholsonAW 2001 Mechanism of action of Escherichia coli ribonuclease III. Stringent chemical requirement for the glutamic acid 117 side chain and Mn2+ rescue of the Glu117Asp mutant. Biochemistry 40 5102 5110

32. AmarasingheAKCalin-JagemanIHarmouchASunWNicholsonAW 2001 Escherichia coli ribonuclease III: affinity purification of hexahistidine-tagged enzyme and assays for substrate binding and cleavage. Methods Enzymol 342 143 158

33. SittkaALucchiniSPapenfortKSharmaCMRolleK 2008 Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator Hfq. PLoS Genet 4 e1000163 doi:10.1371/journal.pgen.1000163

34. NollerHFNomuraM 1987 Ribosomes in Escherichia coli and Salmonella typhimurium. NeidhardtFC Cellular and molecular biology Washington, DC American Society for Microbiology 104 125

35. ChevalierCGeissmannTHelferACRombyP 2009 Probing mRNA structure and sRNA-mRNA interactions in bacteria using enzymes and lead(II). Methods Mol Biol 540 215 232

36. RichardsJLiuQPellegriniOCelesnikHYoaS 2011 An RNA pyrophosphohydrolase triggers 5′-exonucleolytic degradation of mRNA in Bacillus subtilis. Mol Cell 43 940 949

37. MalmgrenCEngdahlHMRombyPWagnerEG 1996 An antisense/target RNA duplex or a strong intramolecular RNA structure 5′ of a translation initiation signal blocks ribosome binding: the case of plasmid R1. RNA 2 1022 1032

38. LiZPanditSDeutscherMP 1998 3′ exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs in Escherichia coli. Proc Natl Acad Sci USA 95 2856 2861

39. OguroAKakeshitaHNakamuraKYamaneKWangW 1998 Bacillus subtilis RNase III cleaves both 5′- and 3′-sites of the small cytoplasmic RNA precursor. J Biol Chem 273 19542 19547

40. YaoSBlausteinJBBechhoferDH 2007 Processing of Bacillus subtilis small cytoplasmic RNA: evidence for an additional endonuclease cleavage site. Nucleic Acids Res 35 4464 4473

41. CaldelariIFechterPLioliouERomillyCChevalierC 2011 A current overview of regulatory RNAs in Staphylococcus aureus. MarchfelderAHessW Regulatory RNAs in prokaryotes Wien and New York Wiley Verlag

42. PichonCFeldenB 2005 Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains. Proc Natl Acad Sci U S A 102 14249 14254

43. GeissmannTChevalierCCrosMJBoissetSFechterP 2009 A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nucleic Acids Res 37 7239 7257

44. BeaumeMHernandezDFarinelliLDeluenCLinderP 2010 Cartography of methicillin-resistant S. aureus transcripts: detection, orientation and temporal expression during growth phase and stress conditions. PLoS ONE 5 e10725 doi:10.1371/journal.pone.0010725

45. NovickRPRossHFProjanSJKornblumJKreiswirthB 1993 Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12 3967 3975

46. FeldenBVandeneschFBoulocPRombyP 2011 The Staphylococcus aureus RNome and its commitment to virulence. PLoS Pathog 7 e1002006 doi:10.1371/journal.ppat.1002006

47. Abu-QatousehLFChinniSVSeggewissJProctorRABrosiusJ 2010 Identification of differentially expressed small non-protein-coding RNAs in Staphylococcus aureus displaying both the normal and the small-colony variant phenotype. J Mol Med (Berl) 88 565 575

48. FozoEMHemmMRStorzG 2008 Small toxic proteins and the antisense RNAs that repress them. Microbiol Mol Biol Rev 72 579 89, Table of Contents

49. JahnNPreisHWiedemannCBrantlS 2012 BsrG/SR4 from Bacillus subtilis- the first temperature-dependent type I toxin-antitoxin system. Mol Microbiol 83 579 598

50. BarrickJEBreakerRR 2007 The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol 8 R239

51. NicholsonAW 1999 Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiol Rev 23 371 390

52. SittkaASharmaCMRolleKVogelJ 2009 Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes. RNA Biol 6 266 275

53. RouxCMDeMuthJPDunmanPM 2011 Characterization of components of the Staphylococcus aureus mRNA degradosome holoenzyme-like complex. J Bacteriol 193 5520 5526

54. BrittonRAWenTSchaeferLPellegriniOUickerWC 2007 Maturation of the 5′ end of Bacillus subtilis 16S rRNA by the essential ribonuclease YkqC/RNase J1. Mol Microbiol 63 127 138

55. RedkoYBechhoferDHCondonC 2008 Mini-III, an unusual member of the RNase III family of enzymes, catalyses 23S ribosomal RNA maturation in B. subtilis. Mol Microbiol 68 1096 1106

56. CondonCBrechemier-BaeyDBeltchevBGrunberg-ManagoMPutzerH 2001 Identification of the gene encoding the 5S ribosomal RNA maturase in Bacillus subtilis: mature 5S rRNA is dispensable for ribosome function. RNA 7 242 253

57. MatsunagaJSimonsELSimonsRW 1996 RNase III autoregulation: structure and function of rncO, the posttranscriptional “operator” RNA 2 1228 1240

58. XuWHuangJCohenSN 2008 Autoregulation of AbsB (RNase III) expression in Streptomyces coelicolor by endoribonucleolytic cleavage of absB operon transcripts. J Bacteriol 190 5526 5530

59. DeanaABelascoJG 2005 Lost in translation: the influence of ribosomes on bacterial mRNA decay. Genes Dev 19 2526 2533

60. RombyPSpringerM 2003 Bacterial translational control at atomic resolution. Trends Genet 19 155 161

61. Calin-JagemanINicholsonAW 2003 Mutational analysis of an RNA internal loop as a reactivity epitope for Escherichia coli ribonuclease III substrates. Biochemistry 42 5025 5034

62. KatzifSDanavallDBowersSBalthazarJTShaferWM 2003 The major cold shock gene, cspA, is involved in the susceptibility of Staphylococcus aureus to an antimicrobial peptide of human cathepsin G. Infect Immun 71 4304 4312

63. EvenSPellegriniOZigLLabasVVinhJ 2005 Ribonucleases J1 and J2: two novel endoribonucleases in B. subtilis with functional homology to E. coli RNase E. Nucleic Acids Res 33 2141 2152

64. PutzerHCondonCBrechemier-BaeyDBritoRGrunberg-ManagoM 2002 Transfer RNA-mediated antitermination in vitro. Nucleic Acids Res 30 3026 3033

65. Ramirez-PenaETrevinoJLiuZPerezNSumbyP 2010 The group A Streptococcus small regulatory RNA FasX enhances streptokinase activity by increasing the stability of the ska mRNA transcript. Mol Microbiol 78 1332 1347

66. ObanaNShirahamaYAbeKNakamuraK 2010 Stabilization of Clostridium perfringens collagenase mRNA by VR-RNA-dependent cleavage in 5′ leader sequence. Mol Microbiol 77 1416 1428

67. GeisingerEAdhikariRPJinRRossHFNovickRP 2006 Inhibition of rot translation by RNAIII, a key feature of agr function. Mol Microbiol 61 1038 1048

68. ViegasSCSilvaUSaramagoMDominguesSArraianoCM 2011 Regulation of the small regulatory RNA MicA by ribonuclease III: a target-dependent pathway. Nucleic Acids Res 39 2918 2930

69. ViegasSCPfeifferVSttkaASilvaIJVogelJ 2007 Characterization of the role of ribonucleases in Salmonella small RNA decay. Nucleic Acids Res 35 7651 7664

70. AfovnyushkinTVecerekBMollIBlasiUKaberdinVR 2005 Both RNase E and RNase III control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB. Nucleic Acids Res 33 1678 1689

71. SwobodaJGCampbellJMeredithTCWalkerS 2010 Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem 11 35 45

72. Toledo-AranaADussurgetONikitasGSestoNGuet-RevilletH 2009 The Listeria transcriptional landscape from saprophytism to virulence. Nature 459 950 956

73. AltuviaSLocker-GiladiHKobySBen-NunOOppenheimAB 1987 RNase III stimulates the translation of the cIII gene of bacteriophage lambda. Proc Natl Acad Sci U S A 84 6511 6515

74. HoffmannSOttoCKurtzSSharmaCMKhaitovichP Fast mapping of short sequences with mismatches, insertions, and deletions using index structures. PLoS Comput Biol 5 e1000502 doi:10.1371/journal.pcbi.1000502

75. NicolJWHeltGAJrBlanchardSGRajaALoraineAE 2009 The Integrated Genome Browser: free software for distribution and exploration of genome-scale dataset. Bionformatics 25 2730 2731

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#