#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Attenuation of Notch and Hedgehog Signaling Is Required for Fate Specification in the Spinal Cord


During the development of the spinal cord, proliferative neural progenitors differentiate into postmitotic neurons with distinct fates. How cells switch from progenitor states to differentiated fates is poorly understood. To address this question, we studied the differentiation of progenitors in the zebrafish spinal cord, focusing on the differentiation of Kolmer-Agduhr″ (KA″) interneurons from lateral floor plate (LFP) progenitors. In vivo cell tracking demonstrates that KA″ cells are generated from LFP progenitors by both symmetric and asymmetric cell divisions. A photoconvertible reporter of signaling history (PHRESH) reveals distinct temporal profiles of Hh response: LFP progenitors continuously respond to Hh, while KA″ cells lose Hh response upon differentiation. Hh signaling is required in LFP progenitors for KA″ fate specification, but prolonged Hh signaling interferes with KA″ differentiation. Notch signaling acts permissively to maintain LFP progenitor cells: activation of Notch signaling prevents differentiation, whereas inhibition of Notch signaling results in differentiation of ectopic KA″ cells. These results indicate that neural progenitors depend on Notch signaling to maintain Hh responsiveness and rely on Hh signaling to induce fate identity, whereas proper differentiation depends on the attenuation of both Notch and Hh signaling.


Vyšlo v časopise: Attenuation of Notch and Hedgehog Signaling Is Required for Fate Specification in the Spinal Cord. PLoS Genet 8(6): e32767. doi:10.1371/journal.pgen.1002762
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002762

Souhrn

During the development of the spinal cord, proliferative neural progenitors differentiate into postmitotic neurons with distinct fates. How cells switch from progenitor states to differentiated fates is poorly understood. To address this question, we studied the differentiation of progenitors in the zebrafish spinal cord, focusing on the differentiation of Kolmer-Agduhr″ (KA″) interneurons from lateral floor plate (LFP) progenitors. In vivo cell tracking demonstrates that KA″ cells are generated from LFP progenitors by both symmetric and asymmetric cell divisions. A photoconvertible reporter of signaling history (PHRESH) reveals distinct temporal profiles of Hh response: LFP progenitors continuously respond to Hh, while KA″ cells lose Hh response upon differentiation. Hh signaling is required in LFP progenitors for KA″ fate specification, but prolonged Hh signaling interferes with KA″ differentiation. Notch signaling acts permissively to maintain LFP progenitor cells: activation of Notch signaling prevents differentiation, whereas inhibition of Notch signaling results in differentiation of ectopic KA″ cells. These results indicate that neural progenitors depend on Notch signaling to maintain Hh responsiveness and rely on Hh signaling to induce fate identity, whereas proper differentiation depends on the attenuation of both Notch and Hh signaling.


Zdroje

1. DessaudEMcMahonAPBriscoeJ 2008 Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135 2489 2503

2. UlloaFBriscoeJ 2007 Morphogens and the control of cell proliferation and patterning in the spinal cord. Cell Cycle 6 2640 2649

3. BriscoeJNovitchBG 2008 Regulatory pathways linking progenitor patterning, cell fates and neurogenesis in the ventral neural tube. Philos Trans R Soc Lond B Biol Sci 363 57 70

4. ZhangYNarayanSGeimanELanuzaGMVelasquezT 2008 V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 60 84 96

5. YangLRastegarSStrahleU 2010 Regulatory interactions specifying Kolmer-Agduhr interneurons. Development 137 2713 2722

6. SchaferMKinzelDWinklerC 2007 Discontinuous organization and specification of the lateral floor plate in zebrafish. Dev Biol 301 117 129

7. OdenthalJvan EedenFJHaffterPInghamPWNusslein-VolhardC 2000 Two distinct cell populations in the floor plate of the zebrafish are induced by different pathways. Dev Biol 219 350 363

8. SchaferMKinzelDNeunerCSchartlMVolffJN 2005 Hedgehog and retinoid signalling confines nkx2.2b expression to the lateral floor plate of the zebrafish trunk. Mech Dev 122 43 56

9. DessaudEYangLLHillKCoxBUlloaF 2007 Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450 717 720

10. DessaudERibesVBalaskasNYangLLPieraniA 2010 Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog. PLoS Biol 8 e1000382 doi:10.1371/journal.pbio.1000382

11. LouviAArtavanis-TsakonasS 2006 Notch signalling in vertebrate neural development. Nat Rev Neurosci 7 93 102

12. PierfeliceTAlberiLGaianoN 2011 Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69 840 855

13. KopanRIlaganMX 2009 The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137 216 233

14. RochaSFLopesSSGosslerAHenriqueD 2009 Dll1 and Dll4 function sequentially in the retina and pV2 domain of the spinal cord to regulate neurogenesis and create cell diversity. Dev Biol 328 54 65

15. MarklundUHanssonEMSundstromEde AngelisMHPrzemeckGK 2010 Domain-specific control of neurogenesis achieved through patterned regulation of Notch ligand expression. Development 137 437 445

16. RamosCRochaSGasparCHenriqueD 2010 Two Notch ligands, Dll1 and Jag1, are differently restricted in their range of action to control neurogenesis in the mammalian spinal cord. PLoS ONE 5 e15515 doi:10.1371/journal.pone.0015515

17. AppelBGivanLAEisenJS 2001 Delta-Notch signaling and lateral inhibition in zebrafish spinal cord development. BMC Dev Biol 1 13

18. YeoSYChitnisAB 2007 Jagged-mediated Notch signaling maintains proliferating neural progenitors and regulates cell diversity in the ventral spinal cord. Proc Natl Acad Sci U S A 104 5913 5918

19. MyatAHenriqueDIsh-HorowiczDLewisJ 1996 A chick homologue of Serrate and its relationship with Notch and Delta homologues during central neurogenesis. Dev Biol 174 233 247

20. LindsellCEBoulterJdiSibioGGosslerAWeinmasterG 1996 Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neural development. Mol Cell Neurosci 8 14 27

21. RabadanMACayusoJLe DreauGCruzCBarziM 2011 Jagged2 controls the generation of motor neuron and oligodendrocyte progenitors in the ventral spinal cord. Cell Death Differ 19 209 219

22. YangXTomitaTWines-SamuelsonMBeglopoulosVTanseyMG 2006 Notch1 signaling influences v2 interneuron and motor neuron development in the spinal cord. Dev Neurosci 28 102 117

23. ParkHCAppelB 2003 Delta-Notch signaling regulates oligodendrocyte specification. Development 130 3747 3755

24. DaveRKEllisTToumpasMCRobsonJPJulianE 2011 Sonic hedgehog and notch signaling can cooperate to regulate neurogenic divisions of neocortical progenitors. PLoS ONE 6 e14680 doi:10.1371/journal.pone.0014680

25. CrawfordTQRoelinkH 2007 The notch response inhibitor DAPT enhances neuronal differentiation in embryonic stem cell-derived embryoid bodies independently of sonic hedgehog signaling. Dev Dyn 236 886 892

26. GunerBKarlstromRO 2007 Cloning of zebrafish nkx6.2 and a comprehensive analysis of the conserved transcriptional response to Hedgehog/Gli signaling in the zebrafish neural tube. Gene Expr Patterns 7 596 605

27. JessenJRMengAMcFarlaneRJPawBHZonLI 1998 Modification of bacterial artificial chromosomes through chi-stimulated homologous recombination and its application in zebrafish transgenesis. Proc Natl Acad Sci U S A 95 5121 5126

28. LewisKEEisenJS 2003 From cells to circuits: development of the zebrafish spinal cord. Prog Neurobiol 69 419 449

29. ConcordetJPLewisKEMooreJWGoodrichLVJohnsonRL 1996 Spatial regulation of a zebrafish patched homologue reflects the roles of sonic hedgehog and protein kinase A in neural tube and somite patterning. Development 122 2835 2846

30. ChenJKTaipaleJCooperMKBeachyPA 2002 Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16 2743 2748

31. HuangPSchierAF 2009 Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. Development 136 3089 3098

32. BaeYKShimizuTHibiM 2005 Patterning of proneuronal and inter-proneuronal domains by hairy- and enhancer of split-related genes in zebrafish neuroectoderm. Development 132 1375 1385

33. ScheerNCampos-OrtegaJA 1999 Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech Dev 80 153 158

34. YangTArslanovaDGuYAugelli-SzafranCXiaW 2008 Quantification of gamma-secretase modulation differentiates inhibitor compound selectivity between two substrates Notch and amyloid precursor protein. Mol Brain 1 15

35. ParkHCShinJAppelB 2004 Spatial and temporal regulation of ventral spinal cord precursor specification by Hedgehog signaling. Development 131 5959 5969

36. RibesVBalaskasNSasaiNCruzCDessaudE 2010 Distinct Sonic Hedgehog signaling dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube. Genes Dev 24 1186 1200

37. EricsonJMortonSKawakamiARoelinkHJessellTM 1996 Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87 661 673

38. Sanchez-CamachoCBovolentaP 2009 Emerging mechanisms in morphogen-mediated axon guidance. Bioessays 31 1013 1025

39. NgANde Jong-CurtainTAMawdsleyDJWhiteSJShinJ 2005 Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev Biol 286 114 135

40. ZhangYBuchholzFMuyrersJPStewartAF 1998 A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20 123 128

41. WanYOtsunaHChienCBHansenC 2009 An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research. IEEE Trans Vis Comput Graph 15 1489 1496

42. WolffCRoySInghamPW 2003 Multiple muscle cell identities induced by distinct levels and timing of hedgehog activity in the zebrafish embryo. Curr Biol 13 1169 1181

43. KarlstromROTalbotWSSchierAF 1999 Comparative synteny cloning of zebrafish you-too: mutations in the Hedgehog target gli2 affect ventral forebrain patterning. Genes Dev 13 388 393

44. KarlstromROTyurinaOVKawakamiANishiokaNTalbotWS 2003 Genetic analysis of zebrafish gli1 and gli2 reveals divergent requirements for gli genes in vertebrate development. Development 130 1549 1564

45. KeZKondrichinIGongZKorzhV 2008 Combined activity of the two Gli2 genes of zebrafish play a major role in Hedgehog signaling during zebrafish neurodevelopment. Mol Cell Neurosci 37 388 401

46. TyurinaOVGunerBPopovaEFengJSchierAF 2005 Zebrafish Gli3 functions as both an activator and a repressor in Hedgehog signaling. Dev Biol 277 537 556

47. BernhardtRRPatelCKWilsonSWKuwadaJY 1992 Axonal trajectories and distribution of GABAergic spinal neurons in wildtype and mutant zebrafish lacking floor plate cells. J Comp Neurol 326 263 272

48. WyartCDel BeneFWarpEScottEKTraunerD 2009 Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461 407 410

49. ShimojoHOhtsukaTKageyamaR 2008 Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58 52 64

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#