Protective Coupling of Mitochondrial Function and Protein Synthesis via the eIF2α Kinase GCN-2
Cells respond to defects in mitochondrial function by activating signaling pathways that restore homeostasis. The mitochondrial peptide exporter HAF-1 and the bZip transcription factor ATFS-1 represent one stress response pathway that regulates the transcription of mitochondrial chaperone genes during mitochondrial dysfunction. Here, we report that GCN-2, an eIF2α kinase that modulates cytosolic protein synthesis, functions in a complementary pathway to that of HAF-1 and ATFS-1. During mitochondrial dysfunction, GCN-2–dependent eIF2α phosphorylation is required for development as well as the lifespan extension observed in Caenorhabditis elegans. Reactive oxygen species (ROS) generated from dysfunctional mitochondria are required for GCN-2–dependent eIF2α phosphorylation but not ATFS-1 activation. Simultaneous deletion of ATFS-1 and GCN-2 compounds the developmental defects associated with mitochondrial stress, while stressed animals lacking GCN-2 display a greater dependence on ATFS-1 and stronger induction of mitochondrial chaperone genes. These findings are consistent with translational control and stress-dependent chaperone induction acting in complementary arms of the UPRmt.
Vyšlo v časopise:
Protective Coupling of Mitochondrial Function and Protein Synthesis via the eIF2α Kinase GCN-2. PLoS Genet 8(6): e32767. doi:10.1371/journal.pgen.1002760
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002760
Souhrn
Cells respond to defects in mitochondrial function by activating signaling pathways that restore homeostasis. The mitochondrial peptide exporter HAF-1 and the bZip transcription factor ATFS-1 represent one stress response pathway that regulates the transcription of mitochondrial chaperone genes during mitochondrial dysfunction. Here, we report that GCN-2, an eIF2α kinase that modulates cytosolic protein synthesis, functions in a complementary pathway to that of HAF-1 and ATFS-1. During mitochondrial dysfunction, GCN-2–dependent eIF2α phosphorylation is required for development as well as the lifespan extension observed in Caenorhabditis elegans. Reactive oxygen species (ROS) generated from dysfunctional mitochondria are required for GCN-2–dependent eIF2α phosphorylation but not ATFS-1 activation. Simultaneous deletion of ATFS-1 and GCN-2 compounds the developmental defects associated with mitochondrial stress, while stressed animals lacking GCN-2 display a greater dependence on ATFS-1 and stronger induction of mitochondrial chaperone genes. These findings are consistent with translational control and stress-dependent chaperone induction acting in complementary arms of the UPRmt.
Zdroje
1. TatsutaTLangerT 2008 Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27 306 314
2. NeupertWHerrmannJM 2007 Translocation of proteins into mitochondria. Annu Rev Biochem 76 723 749
3. BakerBMHaynesCM 2011 Mitochondrial protein quality control during biogenesis and aging. Trends Biochem Sci 36 254 261
4. WalterPRonD 2011 The unfolded protein response: from stress pathway to homeostatic regulation. Science 334 1081 1086
5. HardingHPZhangYRonD 1999 Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397 271 274
6. CalfonMZengHUranoFTillJHHubbardSR 2002 IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415 92 96
7. HartlFUNeupertW 1990 Protein sorting to mitochondria: evolutionary conservations of folding and assembly. Science 247 930 938
8. ZhaoQWangJLevichkinIVStasinopoulosSRyanMT 2002 A mitochondrial specific stress response in mammalian cells. EMBO J 21 4411 4419
9. YonedaTBenedettiCUranoFClarkSGHardingHP 2004 Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci 117 4055 4066
10. MartinusRDGarthGPWebsterTLCartwrightPNaylorDJ 1996 Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur J Biochem 240 98 103
11. HaynesCMYangYBlaisSPNeubertTARonD 2010 The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell 37 529 540
12. WangXZuoXKucejovaBChenXJ 2008 Reduced cytosolic protein synthesis suppresses mitochondrial degeneration. Nat Cell Biol 10 1090 1097
13. LiuSLuB 2010 Reduction of protein translation and activation of autophagy protect against PINK1 pathogenesis in Drosophila melanogaster. PLoS Genet 6 e1001237 doi:10.1371/journal.pgen.1001237
14. ShiYVattemKMSoodRAnJLiangJ 1998 Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 18 7499 7509
15. SyntichakiPTroulinakiKTavernarakisN 2007 eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature 445 922 926
16. PanKZPalterJERogersANOlsenAChenD 2007 Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6 111 119
17. HansenMTaubertSCrawfordDLibinaNLeeSJ 2007 Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6 95 110
18. ZoncuREfeyanASabatiniDM 2011 mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12 21 35
19. RonDWalterP 2007 Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8 519 529
20. TaylorSSHasteNMGhoshG 2005 PKR and eIF2alpha: integration of kinase dimerization, activation, and substrate docking. Cell 122 823 825
21. DeverTE 1999 Translation initiation: adept at adapting. Trends Biochem Sci 24 398 403
22. YangWHekimiS 2010 A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 8 e1000556 doi:10.1371/journal.pbio.1000556
23. LeeSJHwangABKenyonC 2010 Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr Biol 20 2131 2136
24. HaynesCMPetrovaKBenedettiCYangYRonD 2007 ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell 13 467 480
25. NoldenMEhsesSKoppenMBernacchiaARugarliEI 2005 The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 123 277 289
26. WongABoutisPHekimiS 1995 Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing. Genetics 139 1247 1259
27. FengJBussiereFHekimiS 2001 Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1 633 644
28. EwbankJJBarnesTMLakowskiBLussierMBusseyH 1997 Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science 275 980 983
29. YangWHekimiS 2010 Two modes of mitochondrial dysfunction lead independently to lifespan extension in Caenorhabditis elegans. Aging Cell 9 433 447
30. ManningG 2005 Genomic overview of protein kinases. WormBook 1 19
31. VellaiTTakacs-VellaiKZhangYKovacsALOroszL 2003 Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426 620
32. RutledgeEDentonJStrangeK 2002 Cell cycle- and swelling-induced activation of a Caenorhabditis elegans ClC channel is mediated by CeGLC-7alpha/beta phosphatases. J Cell Biol 158 435 444
33. HsuJYSunZWLiXReubenMTatchellK 2000 Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102 279 291
34. WekRCCannonJFDeverTEHinnebuschAG 1992 Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2 alpha kinase GCN2. Mol Cell Biol 12 5700 5710
35. HardingHPZhangYScheunerDChenJJKaufmanRJ 2009 Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development. Proc Natl Acad Sci U S A 106 1832 1837
36. NukazukaAFujisawaHInadaTOdaYTakagiS 2008 Semaphorin controls epidermal morphogenesis by stimulating mRNA translation via eIF2alpha in Caenorhabditis elegans. Genes Dev 22 1025 1036
37. TsaytlerPHardingHPRonDBertolottiA 2011 Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332 91 94
38. ShenXEllisRELeeKLiuCYYangK 2001 Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107 893 903
39. HinnebuschAG 1994 The eIF-2 alpha kinases: regulators of protein synthesis in starvation and stress. Semin Cell Biol 5 417 426
40. BraeckmanBPHouthoofdKDe VreeseAVanfleterenJR 2002 Assaying metabolic activity in ageing Caenorhabditis elegans. Mech Ageing Dev 123 105 119
41. GruneTJungTMerkerKDaviesKJ 2004 Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int J Biochem Cell Biol 36 2519 2530
42. NystromT 2005 Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24 1311 1317
43. BalabanRSNemotoSFinkelT 2005 Mitochondria, oxidants, and aging. Cell 120 483 495
44. GrunewaldAVogesLRakovicAKastenMVandebonaH 2010 Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts. PLoS ONE 5 e12962 doi:10.1371/journal.pone.0012962
45. BenedettiCHaynesCMYangYHardingHPRonD 2006 Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174 229 239
46. IchishitaRTanakaKSugiuraYSayanoTMiharaK 2008 An RNAi screen for mitochondrial proteins required to maintain the morphology of the organelle in Caenorhabditis elegans. J Biochem 143 449 454
47. LeeSSLeeRYFraserAGKamathRSAhringerJ 2003 A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33 40 48
48. LakowskiBHekimiS 1998 The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95 13091 13096
49. DillinAHsuALArantes-OliveiraNLehrer-GraiwerJHsinH 2002 Rates of behavior and aging specified by mitochondrial function during development. Science 298 2398 2401
50. DurieuxJWolffSDillinA 2011 The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144 79 91
51. SonenbergNHinnebuschAG 2009 Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136 731 745
52. BerlangaJJRiveroDMartinRHerreroSMorenoS 2010 Role of mitogen-activated protein kinase Sty1 in regulation of eukaryotic initiation factor 2alpha kinases in response to environmental stress in Schizosaccharomyces pombe. Eukaryot Cell 9 194 207
53. MascarenhasCEdwards-IngramLCZeefLShentonDAsheMP 2008 Gcn4 is required for the response to peroxide stress in the yeast Saccharomyces cerevisiae. Mol Biol Cell 19 2995 3007
54. TsangWYLemireBD 2002 Mitochondrial genome content is regulated during nematode development. Biochem Biophys Res Commun 291 8 16
55. WekSAZhuSWekRC 1995 The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol Cell Biol 15 4497 4506
56. WekRCRamirezMJacksonBMHinnebuschAG 1990 Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression. Mol Cell Biol 10 2820 2831
57. ReinkeSNHuXSykesBDLemireBD 2010 Caenorhabditis elegans diet significantly affects metabolic profile, mitochondrial DNA levels, lifespan and brood size. Mol Genet Metab 100 274 282
58. LiuDYangJLiLMcAdooDJ 1995 Paraquat–a superoxide generator–kills neurons in the rat spinal cord. Free Radic Biol Med 18 861 867
59. FalkMJZhangZRosenjackJRNissimIDaikhinE 2008 Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans. Mol Genet Metab 93 388 397
60. HekimiSLapointeJWenY 2011 Taking a “good” look at free radicals in the aging process. Trends Cell Biol 21 569 576
61. MickDUFoxTDRehlingP 2011 Inventory control: cytochrome c oxidase assembly regulates mitochondrial translation. Nat Rev Mol Cell Biol 12 14 20
62. DeverTEFengLWekRCCiganAMDonahueTF 1992 Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68 585 596
63. IngoliaNTGhaemmaghamiSNewmanJRWeissmanJS 2009 Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324 218 223
64. HinnebuschAG 2005 Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59 407 450
65. WallaceDC 2005 A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39 359 407
66. RualJFCeronJKorethJHaoTNicotAS 2004 Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 14 2162 2168
67. KamathRSFraserAGDongYPoulinGDurbinR 2003 Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421 231 237
68. HsinHKenyonC 1999 Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399 362 366
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 6
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Rumors of Its Disassembly Have Been Greatly Exaggerated: The Secret Life of the Synaptonemal Complex at the Centromeres
- The NSL Complex Regulates Housekeeping Genes in
- Tipping the Balance in the Powerhouse of the Cell to “Protect” Colorectal Cancer
- Interplay between Synaptonemal Complex, Homologous Recombination, and Centromeres during Mammalian Meiosis