#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Simple Auxin Transcriptional Response System Regulates Multiple Morphogenetic Processes in the Liverwort


In flowering plants it is hypothesized the complexity and the robustness of the auxin transcriptional response could be generated by a large number of paralogs encoding components of this signaling network. Yet, it is not known whether alternative embryophyte body plans can be patterned with a simpler auxin transcriptional machinery. We demonstrate that in the liverwort Marchantia polymorpha, the type rather than the number of components of the auxin transcriptional response pathway are sufficient to pattern a complex three-dimensional gametophyte with multiple tissue and cell types. In M. polymorpha, mutations in components of the auxin signaling pathway cause dramatic pleiotropic effects despite having a single class A activating AUXIN RESPONSE FACTOR (MpARF1). This supports the hypothesis that auxin is context dependent and that it facilitates rather than specifies particular developmental processes. We show that auxin signaling is not necessary for survival but it is required to pattern the transition from two-dimensional to three-dimensional growth. This suggests that the evolution of the auxin transcriptional response was critical for the evolution of developmental complexity in land plants.


Vyšlo v časopise: A Simple Auxin Transcriptional Response System Regulates Multiple Morphogenetic Processes in the Liverwort. PLoS Genet 11(5): e32767. doi:10.1371/journal.pgen.1005207
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005207

Souhrn

In flowering plants it is hypothesized the complexity and the robustness of the auxin transcriptional response could be generated by a large number of paralogs encoding components of this signaling network. Yet, it is not known whether alternative embryophyte body plans can be patterned with a simpler auxin transcriptional machinery. We demonstrate that in the liverwort Marchantia polymorpha, the type rather than the number of components of the auxin transcriptional response pathway are sufficient to pattern a complex three-dimensional gametophyte with multiple tissue and cell types. In M. polymorpha, mutations in components of the auxin signaling pathway cause dramatic pleiotropic effects despite having a single class A activating AUXIN RESPONSE FACTOR (MpARF1). This supports the hypothesis that auxin is context dependent and that it facilitates rather than specifies particular developmental processes. We show that auxin signaling is not necessary for survival but it is required to pattern the transition from two-dimensional to three-dimensional growth. This suggests that the evolution of the auxin transcriptional response was critical for the evolution of developmental complexity in land plants.


Zdroje

1. Benkova E, Ivanchenko MG, Friml J, Shishkova S, Dubrovsky JG (2009) A morphogenetic trigger: is there an emerging concept in plant developmental biology? Trends in Plant Science 14: 189–193. doi: 10.1016/j.tplants.2009.01.006 19285906

2. Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, et al. (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291: 306–309. 11209081

3. Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, et al. (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes & Development 16: 3100–3112.

4. Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, et al. (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133: 177–191. doi: 10.1016/j.cell.2008.01.047 18394997

5. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, et al. (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591–602. 14651850

6. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, et al. (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426: 147–153. 14614497

7. Petrasek J, Friml J (2009) Auxin transport routes in plant development. Development 136: 2675–2688. doi: 10.1242/dev.030353 19633168

8. Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, et al. (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. The Plant Cell 17: 616–627. 15659623

9. Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319: 1384–1386. doi: 10.1126/science.1151461 18258861

10. Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, et al. (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Molecular Systems Biology 7: doi: 10.1038/Msb.2011.39

11. Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276: 1865–1868. 9188533

12. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. The Plant Cell 9: 1963–1971. 9401121

13. Kim J, Harter K, Theologis A (1997) Protein-protein interactions among the Aux/IAA proteins. Proceedings of the National Academy of Sciences of the United States of America 94: 11786–11791. 9342315

14. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435: 446–451. 15917798

15. Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 414: 271–276. 11713520

16. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435: 441–445. 15917797

17. Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ (2001) AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. The Plant Cell 13: 2809–2822. 11752389

18. Finet C, Berne-Dedieu A, Scutt CP, Marletaz F (2012) Evolution of the ARF Gene Family in Land Plants: Old Domains, New Tricks. Molecular Biology and Evolution 30: 45–56. doi: 10.1093/molbev/mss220 22977118

19. Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. The Plant Cell 15: 533–543. 12566590

20. Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proceedings of the National Academy of Sciences of the United States of America 96: 5844–5849. 10318972

21. Ulmasov T, Hagen G, Guilfoyle TJ (1999) Dimerization and DNA binding of auxin response factors. The Plant Journal 19: 309–319. 10476078

22. Theologis A (1985) Rapid Gene-Regulation by Auxin in Pea Tissue. In Vitro Cellular & Developmental Biology 21: A39–A39.

23. Abel S, Nguyen MD, Theologis A (1995) The Ps-Iaa4/5-Like Family of Early Auxin-Inducible Messenger-Rnas in Arabidopsis-Thaliana. Journal of Molecular Biology 251: 533–549. 7658471

24. Villalobos LIAC, Lee S, De Oliveira C, Ivetac A, Brandt W, et al. (2012) A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nature Chemical Biology 8: 477–485. doi: 10.1038/nchembio.926 22466420

25. Prigge MJ, Lavy M, Ashton NW, Estelle M (2010) Physcomitrella patens Auxin-Resistant Mutants Affect Conserved Elements of an Auxin-Signaling Pathway. Current Biology 20: 1907–1912. doi: 10.1016/j.cub.2010.08.050 20951049

26. Cooke TJ, Poli D, Sztein AE, Cohen JD (2002) Evolutionary patterns in auxin action. Plant molecular biology 49: 319–338. 12036257

27. Kenrick P, Crane PR (1997) The origin and early evolution of land plants: a cladistic study. Washington, D.C.: Smithsonian Institution Press. 21238287

28. Qiu YL, Li LB, Wang B, Chen ZD, Knoop V, et al. (2006) The deepest divergences in land plants inferred from phylogenomic evidence. Proceedings of the National Academy of Sciences of the United States of America 103: 15511–15516. 17030812

29. Mishler BD, Churchill SP (1984) A Cladistic Approach to the Phylogeny of the Bryophytes. Brittonia 36: 406–424.

30. Forrest LL, Davis EC, Long DG, Crandall-Stotler BJ, Clark A, et al. (2006) Unraveling the evolutionary history of the liverworts (Marchantiophyta): multiple taxa, genomes and analyses. Bryologist 109: 303–334.

31. Berrie GK (1963) Cytology and Phylogeny of Liverworts. Evolution 17: 347–357.

32. Mirbel C-F (1835) Researches anatomiques et physiologiques sur le Marchantia polymorpha. Mém Acad Roy Sc Inst France 13: 337–436.

33. Kny L (1890) Botanische wandtafeln mit erläuterndem text. Berlin: Wiegandt. Hempel & Parey.

34. O'Hanlon ME (1926) Germination of Spores and Early Stages in Development of Gametophyte of Marchantia polymorpha. Botanical Gazette 82: 215–222.

35. Leitgeb H (1881) Untersuchungen über die Lebermoose. Heft VI. Die Marchantieen. Jena: Leuschner & Lubensky.

36. Douin R (1921) Reserches sur les Marchantiées. Revue générale de botanique 33: 34–62; 99–145; 190–209. doi: 10.1007/s00221-011-2827-4 21842191

37. Barnes CR, Land WJG (1908) Bryological papers II. The origin of the cupule of marchantia—Contributions from the hull botanical laboratory 120. Botanical Gazette 46: 401–409.

38. Hedwig J (1783) Theoria Generationis et Fructificationis Plantarum Cryptogamicarum Linnaei, mere propriis Observationibus et Experimentis Superstructa. Petropoli: Academiae Imper. Scientiarum.

39. Hofmeister WFB (1862) On the germination, development, and fructification of the higher Cryptogamia, and on the fructification of the Coniferae. Currey F, translator. London: Ray Society. 506 p.

40. Ishizaki K, Nonomura M, Kato H, Yamato KT, Kohchi T (2012) Visualization of auxin-mediated transcriptional activation using a common auxin-responsive reporter system in the liverwort Marchantia polymorpha. Journal of Plant Research 125: 643–651. doi: 10.1007/s10265-012-0477-7 22311005

41. Tarén N (1958) Regulating the Initial Development of Gemmae in Marchantia polymorpha. The Bryologist 61: 191–204.

42. Halbsguth W, Kohlenbach H-W (1953) Einige versuche über die wirkung von heteroauxin auf die symmetrieentwicklung der brutkörperkeimlinge von Marchanta polymorpha L. Planta 42: 349–366.

43. Kaul KN, Mitra GC, Tripathi BK (1962) Responses of Marchantia in Aseptic Culture to Well-known Auxins and Antiauxins. Annals of Botany 26: 447–466.

44. Davidonis GH, Munroe MH (1972) Apical Dominance in Marchantia—Correlative Inhibition of Neighbor Lobe Growth. Botanical Gazette 133: 177–184.

45. Fitting H (1939) Untersuchungen über den Einfluss von Licht und Dunkelheit auf die Entwicklung von Moosen. I. Die Brutkörper der Marchantieen. Jahrbücher für wissenschaftliche Botanik 88: 633–722

46. Rousseau J (1950) Action de l'acide indol beta-acétique sur les propagules de marchantia polymorpha et Lunularia cruciata. Comptes rendus hebdomadaires des séances de l'Académie des sciences 230: 675–676. 17597171

47. Rousseau J (1951) Action de l'acide x napthaléne acétique sur les corbeilles á propagules de Marchantia polymorpha L. et de Lunularia cruciata Adans. Comptes rendus hebdomadaires des séances de l'Académie des sciences 232: 107–108. 17597171

48. Rousseau J (1951) Action des acides 2.4-dichloro-phénoxy-acétique et 2.5-dichloro-thio-acétique sur les propagules de Marchantia polymorpha L. Comptes rendus hebdomadaires des séances de l'Académie des sciences 232: 749–751. 17597171

49. Rousseau J (1952) Influence des hétéroauxines sur la croissance des corbeilles a propagules de Marchantia polymorpha L. et de Lunularia cruciata Adans. Revue Bryologique et Lichénologique 75: 239–241.

50. Rousseau J (1953) Action de hétéroauxines sur les thalles de Lunularia cruciata Adans. et de Marchantia polymorpha L. Revue Bryologique et Lichénologique 76: 22–25.

51. Rousseau J (1953) Action des hetero-auxines sur les chapeaux du Marchantia polymorpha L. Bulletin de la Société Botanique de France 100: 179–180.

52. Kohlenbach HW (1957) Die Bedeutung des heretoauxins für die entwicklung der Dorsiventralität der Brutkörperkeimlinge von Marchantia polymorpha L. Biologishes Zentralblatt 76: 70–125.

53. Maravolo NC, Voth PD (1966) Morphogenic Effects of 3 Growth Substances on Marchantia Gemmalings. Botanical Gazette 127: 79–86.

54. Otto K-R (1976) Der Einfluss von ausseren Faktoren auf die Bildung von Primärrhizoiden bei Brutkörpern von Marchantia polymorpha 1. Z Pflanzenphysiol 80: 189–196.

55. Miller MW, Voth PD (1962) Geotropic Responses of Marchantia. The Bryologist 65: 146–154.

56. Keller CP, Van Volkenburgh E (1997) Auxin-Induced Epinasty of Tobacco Leaf Tissues (A Nonethylene-Mediated Response). Plant physiology 113: 603–610. 12223629

57. He WR, Brumos J, Li HJ, Ji YS, Ke M, et al. (2011) A Small-Molecule Screen Identifies L-Kynurenine as a Competitive Inhibitor of TAA1/TAR Activity in Ethylene-Directed Auxin Biosynthesis and Root Growth in Arabidopsis. The Plant Cell 23: 3944–3960. doi: 10.1105/tpc.111.089029 22108404

58. Tao Y, Ferrer JL, Ljung K, Pojer F, Hong FX, et al. (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133: 164–176. doi: 10.1016/j.cell.2008.01.049 18394996

59. Nomura T, Itouga M, Kojima M, Kato Y, Sakakibara H, et al. (2014) Copper mediates auxin signalling to control cell differentiation in the copper moss Scopelophila cataractae. Journal of Experimental Botany 66: 1205–1213. doi: 10.1093/jxb/eru470 25428998

60. Glass NL, Kosuge T (1986) Cloning of the Gene for Indoleacetic Acid-Lysine Synthetase from Pseudomonas-Syringae Subsp Savastanoi. Journal of Bacteriology 166: 598–603. 3084452

61. Romano CP, Hein MB, Klee HJ (1991) Inactivation of Auxin in Tobacco Transformed with the Indoleacetic-Acid Lysine Synthetase Gene of Pseudomonas-Savastanoi. Genes & Development 5: 438–446.

62. Landberg K, Pederson ERA, Viaene T, Bozorg B, Friml J, et al. (2013) The Moss Physcomitrella patens Reproductive Organ Development Is Highly Organized, Affected by the Two SHI/STY Genes and by the Level of Active Auxin in the SHI/STY Expression Domain. Plant physiology 162: 1406–1419. 23669745

63. Althoff F, Kopischke S, Zobell O, Ide K, Ishizaki K, et al. (2014) Comparison of the MpEF1α and CaMV35 promoters for application in Marchantia polymorpha overexpression studies. Transgenic Research 23: 234–244.

64. Eklund DM, Thelander M, Landberg K, Staldal V, Nilsson A, et al. (2010) Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens. Development 137: 1275–1284. doi: 10.1242/dev.039594 20223761

65. Kuusk S, Sohlberg JJ, Magnus Eklund D, Sundberg E (2006) Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent manner. The Plant Journal 47: 99–111. 16740146

66. Sohlberg JJ, Myrenas M, Kuusk S, Lagercrantz U, Kowalczyk M, et al. (2006) STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. The Plant Journal 47: 112–123. 16740145

67. Kato H, Ishizaki K, Kouno M, Shirakawa M, Bowman JL, et al. (2015) Auxin-mediated transcriptional system with a minimal set of components is critical for morphogenesis through the life cycle in Marchantia polymorpha. PLOS Genetics 11: doi: 10.1371/journal.pgen.1005084

68. Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, et al. (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18: 1134–1151. 16603651

69. Flores-Sandoval E, Dierschke T, Fisher TJ, Bowman JL (2015) Efficient and inducible use of artificial microRNAs in Marchantia polymorpha. Plant and Cell Physiology 56: in press.

70. Douin MR (1923) Reserches sur le gamétophyte des Marchantiées. Revue générale de botanique 35: 213–226. doi: 10.1007/s00221-011-2827-4 21842191

71. Apostolakos P, Galatis B, Mitrakos K (1982) Studies on the Development of the Air Pores and Air Chambers of Marchantia-Paleacea. I. Light-Microscopy. Annals of Botany 49: 377–396.

72. De Smet I, Voss U, Lau S, Wilson M, Shao N, et al. (2011) Unraveling the Evolution of Auxin Signaling. Plant physiology 155: 209–221. doi: 10.1104/pp.110.168161 21081694

73. Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, et al. (2011) The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants. Science 332: 960–963. doi: 10.1126/science.1203810 21551031

74. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, et al. (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319: 64–69. 18079367

75. Floyd SK, Zalewski CS, Bowman JL (2006) Evolution of Class III Homeodomain leucine zipper genes in streptophytes. Genetics 173: 373–388. 16489224

76. Zalewski CS, Floyd SK, Furumizu C, Sakakibara K, Stevenson DW, et al. (2013) Evolution of the Class IV HD-Zip Gene Family in Streptophytes. Molecular Biology and Evolution 30: 2347–2365. doi: 10.1093/molbev/mst132 23894141

77. Hori K, Maruyama F, Fujisawa T, Togashi T, Yamamoto N, et al. (2014) Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nature Communications 5; doi: 10.1038/ncomms4978

78. Bowman JL (2013) Walkabout on the long branches of plant evolution. Current Opinion in Plant Biology 16: 70–77. doi: 10.1016/j.pbi.2012.10.001 23140608

79. Sugano SS, Shirakawa M, Takagi J, Matsuda Y, Shimada T, et al. (2014) CRISPR/Cas9-Mediated Targeted Mutagenesis in the Liverwort Marchantia polymorpha L. Plant and Cell Physiology 55: 475–481. doi: 10.1093/pcp/pcu014 24443494

80. Binns AN, Maravolo NC (1972) Apical Dominance, Polarity, and Adventitious Growth in Marchantia Polymorpha. American Journal of Botany 59: 691–696.

81. Pfeffer W (1871) Studien über Symmetric und spezifische Wachstumsursachen. Arbeiten Des Botanischen Instituts in Würzburg 1: 77–98.

82. Fitting H (1936) Untersuchungen über die Induktion der Dorsiventralität bei den keimenden Brutkörpern von Marchantia und Lunularia. I. Die Induktoren und ihre Wirkungen. Jahrbücher für wissenschaftliche Botanik 82: 333–376.

83. Fitting H (1936) Untersuchungen über die Induktion der Dorsiventralität bei den Marehantieen brutkörpern. II. Die Schwerkraft als Induktor der Dorsiventralität. Jahrbücher für wissenschaftliche Botanik 82: 696–740.

84. Fitting H (1937) Untersuchungen über die Induktion der Dorsiventralität bei den Brutkörperkeimlingen der Marchantieen. III. Das Licht als Induktor der Dorsiventralität. Jahrbücher für wissenschaftliche Botanik 85: 169–242.

85. Fitting H (1938) Untersuchungen über die Induktion der Dorsiventralität bei den Brutkörperkeimlingen der Marchantieen. V. Die Umkehrbarkeit der durch Aussenfaktoren induzierten Dorsiventralität. Jahrbücher für wissenschaftliche Botanik 86: 107–227.

86. Muller A, Guan C, Galweiler L, Tanzler P, Huijser P, et al. (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. The EMBO Journal 17: 6903–6911. 9843496

87. Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, et al. (2006) A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proceedings of the National Academy of Sciences of the United States of America 103: 236–241. 16371470

88. Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, et al. (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131: 1089–1100. 14973283

89. Cholodny N (1924) Über die hormonale Wirkung der Organspitze bei der geotropischen Krümmung. Berichte der Deutschen Botanischen Gesellschaft 42: 356–362.

90. Stewart JL, Nemhauser JL (2010) Do trees grow on money? Auxin as the currency of the cellular economy Cold Spring Harb Perspect Biol 2: a001420. doi: 10.1101/cshperspect.a001420 20182619

91. Bennett T, Leyser O (2014) The Auxin Question: A Philosophical Overview. In: Zažímalová E, Petrášek J, Benková E, editors. Auxin and Its Role in Plant Development. Vienna: Springer. pp. 3–19.

92. Ishizaki K, Chiyoda S, Yamato KT, Kohchi T (2008) Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant and Cell Physiology 49: 1084–1091. doi: 10.1093/pcp/pcn085 18535011

93. Rambaut A (1996) Se-Al: Sequence alignment editor. http://tree.bio.ed.ac.uk/software/seal/

94. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. 11524383

95. Eshed Y, Baum SF, Bowman JL (1999) Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell 99: 199–209. 10535738

96. Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, et al. (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Current Biology 15: 1899–1911. 16271866

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#