Genomic Heritability: What Is It?
Whole-genome regression (WGR) methods are being increasingly used for inferring the proportion of variance that can be explained by a linear regression on a massive number of markers, called ‘genomic heritability.’ However, the statistical assumptions involved in WGRs are somewhat at odds with important quantitative genetics concepts. We argue and show that the parameters of the statistical model used for data analysis typically bear a tenuous relationship with the quantitative genetic parameters of interest. We also study, using simulations, the extent of bias of likelihood-based estimates. We conclude that under certain circumstances estimates can have a sizable finite-sample bias; therefore, caution needs to be exercised when interpreting parameter estimates derived from WGR models.
Vyšlo v časopise:
Genomic Heritability: What Is It?. PLoS Genet 11(5): e32767. doi:10.1371/journal.pgen.1005048
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1005048
Souhrn
Whole-genome regression (WGR) methods are being increasingly used for inferring the proportion of variance that can be explained by a linear regression on a massive number of markers, called ‘genomic heritability.’ However, the statistical assumptions involved in WGRs are somewhat at odds with important quantitative genetics concepts. We argue and show that the parameters of the statistical model used for data analysis typically bear a tenuous relationship with the quantitative genetic parameters of interest. We also study, using simulations, the extent of bias of likelihood-based estimates. We conclude that under certain circumstances estimates can have a sizable finite-sample bias; therefore, caution needs to be exercised when interpreting parameter estimates derived from WGR models.
Zdroje
1. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819–1829. 11290733
2. VanRaden P (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91: 4414–4423. doi: 10.3168/jds.2007-0980 18946147
3. Crossa J, de los Campos G, Perez P, Gianola D, Burgueño J, et al. (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186: 713–724. doi: 10.1534/genetics.110.118521 20813882
4. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, et al. (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42: 565–569. doi: 10.1038/ng.608 20562875
5. Speed D, Hemani G, Johnson MR, Balding DJ (2012) Improved heritability estimation from genome-wide SNPs. Am J Hum Genet 91: 1011–1021. doi: 10.1016/j.ajhg.2012.10.010 23217325
6. de los Campos G, Vazquez AI, Fernando R, Klimentidis YC, Sorensen D (2013) Prediction of Complex Human Traits Using the Genomic Best Linear Unbiased Predictor. PLoS Genet 9: e1003608. doi: 10.1371/journal.pgen.1003608 23874214
7. de los Campos G, Sorensen DA (2013) A commentary on Pitfalls of predicting complex traits from SNPs. Nat Rev Genet 14: 894–894. doi: 10.1038/nrg3457-c2 24240515
8. Henderson CR (1950) Estimation of genetic parameters. Ann Math Stat 21: 309–310.
9. Thompson EA (1975) The estimation of pairwise relationships. Ann Hum Genet 39: 173–188. 1052764
10. Ritland K (1996) A marker-based method for inferences about quantitative inheritance in natural populations. Evolution: 1062–1073.
11. Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152: 1753. 10430599
12. Morton NE, Yee S, Harris DE, Lew R (1971) Bioassay of kinship. Theor Popul Biol 2: 507–524. 5162702
13. Thomas SC (2005) The estimation of genetic relationships using molecular markers and their efficiency in estimating heritability in natural populations. Philos Trans R Soc B Biol Sci 360: 1457–1467.
14. Zaitlen N, Kraft P (2012) Heritability in the genome-wide association era. Hum Genet 131: 1655–1664. doi: 10.1007/s00439-012-1199-6 22821350
15. Bulmer MG (1980) The Mathematical Theory of Quantitative Genetics. Oxford University Press. 262 p.
16. Falconer DS, Mackay TFC (1996) Introduction to Quantitative Genetics (4th Edition). 4 edition. Benjamin Cummings.
17. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Available: http://www.invemar.org.co/redcostera1/invemar/docs/RinconLiterario/2011/febrero/AG_8.pdf. Accessed 2 December 2013.
18. Hill WG, Robertson A (1966) The effect of linkage on limits to artificial selection. Genet Res 8: 269–294. 5980116
19. Avery PJ, Hill WG (1977) Variability in genetic parameters among small populations. Genet Res 29: 193–213. 892441
20. Gianola D, Hospital F, Verrier E (2013) Contribution of an additive locus to genetic variance when inheritance is multi-factorial with implications on interpretation of GWAS. Theor Appl Genet 126: 1457–1472. doi: 10.1007/s00122-013-2064-2 23508282
21. Goddard M (2009) Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136: 245–257. doi: 10.1007/s10709-008-9308-0 18704696
22. Gianola D, de los Campos G, Hill WG, Manfredi E, Fernando R (2009) Additive genetic variability and the Bayesian alphabet. Genetics 183: 347–363. doi: 10.1534/genetics.109.103952 19620397
23. Gianola D (2013) Priors in whole-genome regression: the Bayesian alphabet returns. Genetics 194: 573–596. doi: 10.1534/genetics.113.151753 23636739
24. Lehmann EL, Casella G (1998) Theory of point estimation. Springer.
25. Cornelis MC, Agrawal A, Cole JW, Hansel NN, Barnes KC, et al. (2010) The Gene, Environment Association Studies consortium (GENEVA): maximizing the knowledge obtained from GWAS by collaboration across studies of multiple conditions. Genet Epidemiol 34: 364–372. doi: 10.1002/gepi.20492 20091798
26. Li CC, Horvitz DG (1953) Some methods of estimating the inbreeding coefficient. Am J Hum Genet 5: 107. 13065259
27. Ritland K (2000) Marker-inferred relatedness as a tool for detecting heritability in nature. Mol Ecol 9: 1195–1204. 10972759
28. Toro M, Barragán C, Óvilo C, Rodrigañez J, Rodriguez C, et al. (2002) Estimation of coancestry in Iberian pigs using molecular markers. Conserv Genet 3: 309–320.
29. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet 9: 255–266. doi: 10.1038/nrg2322 18319743
30. Gianola D, Perez-Enciso M, Toro MA (2003) On marker-assisted prediction of genetic value: beyond the ridge. Genetics 163: 347–365. 12586721
31. Yang W, Tempelman RJ (2012) A Bayesian Antedependence Model for Whole Genome Prediction. Genetics: 1491–1501. doi: 10.1534/genetics.111.131540 22135352
32. Hill WG, Weir BS (2011) Variation in actual relationship as a consequence of Mendelian sampling and linkage. Genet Res 93: 47–64. doi: 10.1017/S0016672310000480 21226974
33. Goddard ME, Hayes BJ, Meuwissen THE (2011) Using the genomic relationship matrix to predict the accuracy of genomic selection. J Anim Breed Genet 128: 409–421. doi: 10.1111/j.1439-0388.2011.00964.x 22059574
34. Jiang J., Li C., Debashis P., Yang C. and Zhao H (2014) High-dimensional Genome-wide Association Study and Misspecified Mixed Model Analysis. eprint arXiv:1404.2355.
35. Lee SH, Yang J, Chen G- B, Ripke S, Stahl EA, et al. (2013) Estimation of SNP heritability from dense genotype data. Am J Hum Genet 93: 1151–1155. doi: 10.1016/j.ajhg.2013.10.015 24314550
36. Speed D, Hemani G, Johnson MR, Balding DJ (2013) Response to Lee et al.: SNP-Based Heritability Analysis with Dense Data. Am J Hum Genet 93: 1155–1157. doi: 10.1016/j.ajhg.2013.10.016 24314551
37. Sorensen D, Fernando R, Gianola D (2001) Inferring the trajectory of genetic variance in the course of artificial selection. Genet Res 77: 83–94. 11279833
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 5
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Drosophila Spaghetti and Doubletime Link the Circadian Clock and Light to Caspases, Apoptosis and Tauopathy
- Autoselection of Cytoplasmic Yeast Virus Like Elements Encoding Toxin/Antitoxin Systems Involves a Nuclear Barrier for Immunity Gene Expression
- Parp3 Negatively Regulates Immunoglobulin Class Switch Recombination
- PERK Limits Lifespan by Promoting Intestinal Stem Cell Proliferation in Response to ER Stress