#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Epistasis Is a Major Determinant of the Additive Genetic Variance in


Complex traits are influenced not only by the effects of individual genes but also by the myriad ways that these genes interact with one another, commonly referred to as epistasis. Theory suggests that epistasis could have important population-level implications in terms of the genetic variance components that govern evolution in response to natural or artificial selection. Unfortunately, empirical examples extending from observed interactions between genes to genetic variances are scant, particularly for natural populations. Here, we characterize epistasis between naturally segregating polymorphisms in M. guttatus and determine the cumulative effect of epistasis on population genetic variance components. To do this, we first elaborate the necessary statistical theory to accommodate estimation error in genetic effects, as failing to do so will upwardly bias variance predictions. We find that gene interactions have a net positive effect on both the total and additive genetic variance for most traits; however, the contribution of individual loci to the additive variance depends heavily on the genotype frequencies at other loci. Therefore, the effect of epistasis extends beyond the individual’s phenotype to influence how both populations and their component alleles respond to selection.


Vyšlo v časopise: Epistasis Is a Major Determinant of the Additive Genetic Variance in. PLoS Genet 11(5): e32767. doi:10.1371/journal.pgen.1005201
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005201

Souhrn

Complex traits are influenced not only by the effects of individual genes but also by the myriad ways that these genes interact with one another, commonly referred to as epistasis. Theory suggests that epistasis could have important population-level implications in terms of the genetic variance components that govern evolution in response to natural or artificial selection. Unfortunately, empirical examples extending from observed interactions between genes to genetic variances are scant, particularly for natural populations. Here, we characterize epistasis between naturally segregating polymorphisms in M. guttatus and determine the cumulative effect of epistasis on population genetic variance components. To do this, we first elaborate the necessary statistical theory to accommodate estimation error in genetic effects, as failing to do so will upwardly bias variance predictions. We find that gene interactions have a net positive effect on both the total and additive genetic variance for most traits; however, the contribution of individual loci to the additive variance depends heavily on the genotype frequencies at other loci. Therefore, the effect of epistasis extends beyond the individual’s phenotype to influence how both populations and their component alleles respond to selection.


Zdroje

1. Carlborg Ö., et al., A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome research, 2003. 13(3): p. 413–421. 12618372

2. Huang W., et al., Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proceedings of the National Academy of Sciences, 2012. 109(39): p. 15553–15559. 22949659

3. Kelly J.K. and Mojica J.P., Interactions among flower-size QTL of Mimulus guttatus are abundant but highly variable in nature. Genetics, 2011. 189(4): p. 1461–1471. doi: 10.1534/genetics.111.132423 21926295

4. Li Z., et al., Epistasis for three grain yield components in rice (Oryxa sativa L.). Genetics, 1997. 145(2): p. 453–465. 9071598

5. Moore J.H., The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Human heredity, 2003. 56(1–3): p. 73–82. 15031618

6. Shimomura K., et al., Genome-wide epistatic interaction analysis reveals complex genetic determinants of circadian behavior in mice. Genome research, 2001. 11(6): p. 959–980. 11381025

7. Zuk O., et al., The mystery of missing heritability: Genetic interactions create phantom heritability. Proceedings of the National Academy of Sciences, 2012. 109(4): p. 1193–1198. doi: 10.1073/pnas.1119675109 22223662

8. Bloom J.S., et al., Finding the sources of missing heritability in a yeast cross. Nature, 2013. 494(7436): p. 234–237. doi: 10.1038/nature11867 23376951

9. Crow J.F., On epistasis: why it is unimportant in polygenic directional selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010. 365(1544): p. 1241–1244. doi: 10.1098/rstb.2009.0275 20308099

10. Hansen T.F., Why epistasis is important for selection and adaptation. Evolution, 2013. 67(12): p. 3501–3511. doi: 10.1111/evo.12214 24299403

11. Falconer D.S., Mackay T.F., and Frankham R., Introduction to Quantitative Genetics (4th edn). Trends in Genetics, 1996. 12(7): p. 280.

12. Hill W.G., Goddard M.E., and Visscher P.M., Data and theory point to mainly additive genetic variance for complex traits. PLoS Genetics, 2008. 4(2): p. e1000008. doi: 10.1371/journal.pgen.1000008 18454194

13. Mäki-Tanila A. and Hill W.G., Influence of gene interaction on complex trait variation with multilocus models. Genetics, 2014. 198(1): p. 355–367. doi: 10.1534/genetics.114.165282 24990992

14. Carter A.J.R., Hermisson J., and Hansen T.F., The role of epistatic gene interactions in the response to selection and the evolution of evolvability. Theoretical Population Biology, 2005. 68(3): p. 179–196. 16122771

15. Cheverud J.M. and Routman E.J., Epistasis and its contribution to genetic variance components. Genetics, 1995. 139(3): p. 1455–1461. 7768453

16. Wade, M.J. and C.J. Goodnight, Perspective: the theories of Fisher and Wright in the context of metapopulations: when nature does many small experiments. Evolution, 1998: p. 1537–1553.

17. Goodnight, C.J., On the effect of founder events on epistatic genetic variance. Evolution, 1987: p. 80–91.

18. Álvarez-Castro J.M. and Carlborg Ö., A unified model for functional and statistical epistasis and its application in quantitative trait loci analysis. Genetics, 2007. 176(2): p. 1151–1167. 17409082

19. Luo L., Mao Y., and Xu S., Correcting the bias in estimation of genetic variances contributed by individual QTL. Genetica, 2003. 119(2): p. 107–114. 14620950

20. Wu C., et al., Mimulus is an emerging model system for the integration of ecological and genomic studies. Heredity, 2007. 100(2): p. 220–230. 17551519

21. Kelly J.K., Epistasis in Monkeyflowers. Genetics, 2005. 171(4): p. 1917–1931. 15944350

22. Kelly J., Testing the rare-alleles model of quantitative variation by artificial selection. Genetica, 2008. 132(2): p. 187–198. 17607507

23. Willis J.H., The Role of Genes of Large Effect on Inbreeding Depression in Mimulus guttatus. Evolution, 1999. 53(6): p. 1678–1691.

24. Bates, D., et al., lme4: Linear mixed effects models using Eigen and S4.(R package v. 1.0–6), 2014, See http://CRAN.R-project.org/package=lme4.

25. Van der Veen J., Tests of non-allelic interaction and linkage for quantitative characters in generations derived from two diploid pure lines. Genetica, 1959. 30(1): p. 201–232.

26. Weir B. and Cockerham C.C., Two-locus theory in quantitative genetics. 1977: North Carolina State University. Institute of Statistics.

27. Kelly, J.K., Response to selection in partially self-fertilizing populations. I. Selection on a single trait. Evolution, 1999: p. 336–349.

28. Kelly J.K. and Williamson S., Predicting response to selection on a quantitative trait: a comparison between models for mixed-mating populations. Journal of theoretical biology, 2000. 207(1): p. 37–56. 11027478

29. Carlborg O. and Haley C.S., Epistasis: too often neglected in complex trait studies? Nat Rev Genet, 2004. 5(8): p. 618–625. 15266344

30. Phillips P.C., Epistasis [mdash] the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet, 2008. 9(11): p. 855–867. doi: 10.1038/nrg2452 18852697

31. Kempthorne O., The correlation between relatives in a random mating population. Proceedings of the Royal Society of London. Series B-Biological Sciences, 1954. 143(910): p. 103–113.

32. Cockerham C.C., An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genetics, 1954. 39(6): p. 859. 17247525

33. McGregor A.P., et al., Morphological evolution through multiple cis-regulatory mutations at a single gene. Nature, 2007. 448(7153): p. 587–590. 17632547

34. Hansen, T.F., The evolution of genetic architecture. Annual Review of Ecology, Evolution, and Systematics, 2006: p. 123–157.

35. Le Rouzic, A., Estimating directional epistasis. Frontiers in genetics, 2014. 5.

36. Phillips, P.C., S.P. Otto, and M.C. Whitlock, Beyond the average. Epistasis and the evolutionary process, 2000: p. 20–38.

37. Griffing B., Theoretical consequences of truncation selection based on the individual phenotype. Australian Journal of Biological Sciences, 1960. 13(3): p. 307–343.

38. Kimura M. and Crow J.F., Effect of overall phenotypic selection on genetic change at individual loci. Proceedings of the National Academy of Sciences, 1978. 75(12): p. 6168–6171. 282633

39. Johansson A.M., et al., Genome-Wide Effects of Long-Term Divergent Selection. PLoS Genet, 2010. 6(11): p. e1001188. doi: 10.1371/journal.pgen.1001188 21079680

40. Turner T.L., et al., Population-Based Resequencing of Experimentally Evolved Populations Reveals the Genetic Basis of Body Size Variation in Drosophila melanogaster. PLoS Genet, 2011. 7(3): p. e1001336. doi: 10.1371/journal.pgen.1001336 21437274

41. Kelly J.K., Koseva B., and Mojica J.P., The genomic signal of partial sweeps in Mimulus guttatus. Genome biology and evolution, 2013. 5(8): p. 1457–1469. doi: 10.1093/gbe/evt100 23828880

42. Burke M.K., et al., Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature, 2010. 467(7315): p. 587–590. doi: 10.1038/nature09352 20844486

43. Remolina S.C., et al., GENOMIC BASIS OF AGING AND LIFE‐HISTORY EVOLUTION IN DROSOPHILA MELANOGASTER. Evolution, 2012. 66(11): p. 3390–3403. doi: 10.1111/j.1558-5646.2012.01710.x 23106705

44. Hayes B., et al., A genome map of divergent artificial selection between Bos taurus dairy cattle and Bos taurus beef cattle. Animal genetics, 2009. 40(2): p. 176–184. doi: 10.1111/j.1365-2052.2008.01815.x 19067671

45. Simões P., et al., How repeatable is adaptive evolution? The role of geographical origin and founder effects in laboratory adaptation. Evolution, 2008. 62(8): p. 1817–1829. doi: 10.1111/j.1558-5646.2008.00423.x 18489721

46. Orozco‐terwengel P., et al., Adaptation of Drosophila to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles. Molecular ecology, 2012. 21(20): p. 4931–4941. doi: 10.1111/j.1365-294X.2012.05673.x 22726122

47. Scarcelli N. and Kover P.X., Standing genetic variation in FRIGIDA mediates experimental evolution of flowering time in Arabidopsis. Molecular ecology, 2009. 18(9): p. 2039–2049. doi: 10.1111/j.1365-294X.2009.04145.x 19317844

48. Carlborg Ö., et al., Epistasis and the release of genetic variation during long-term selection. Nature genetics, 2006. 38(4): p. 418–420. 16532011

49. Makowsky R., et al., Beyond missing heritability: prediction of complex traits. PLoS genetics, 2011. 7(4): p. e1002051. doi: 10.1371/journal.pgen.1002051 21552331

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#