Cell Specific eQTL Analysis without Sorting Cells
Many variants in the genome, including variants associated with disease, affect the expression of genes. These so-called expression quantitative trait loci (eQTL) can be used to gain insight in the downstream consequences of disease. While it has been shown that many disease-associated variants alter gene expression in a cell-type dependent manner, eQTL datasets for specific cell types may not always be available and their sample size is often limited. We present a method that is able to detect cell type specific effects within eQTL datasets that have been generated from whole tissues (which may be composed of many cell types), in our case whole blood. By combining numerous whole blood datasets through meta-analysis, we show that we are able to detect eQTL effects that are specific for neutrophils and lymphocytes (two blood cell types). Additionally, we show that the variants associated with some diseases may preferentially alter the gene expression in one of these cell types. We conclude that our method is an alternative method to detect cell type specific eQTL effects, that may complement generating cell type specific eQTL datasets and that may be applied on other cell types and tissues as well.
Vyšlo v časopise:
Cell Specific eQTL Analysis without Sorting Cells. PLoS Genet 11(5): e32767. doi:10.1371/journal.pgen.1005223
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1005223
Souhrn
Many variants in the genome, including variants associated with disease, affect the expression of genes. These so-called expression quantitative trait loci (eQTL) can be used to gain insight in the downstream consequences of disease. While it has been shown that many disease-associated variants alter gene expression in a cell-type dependent manner, eQTL datasets for specific cell types may not always be available and their sample size is often limited. We present a method that is able to detect cell type specific effects within eQTL datasets that have been generated from whole tissues (which may be composed of many cell types), in our case whole blood. By combining numerous whole blood datasets through meta-analysis, we show that we are able to detect eQTL effects that are specific for neutrophils and lymphocytes (two blood cell types). Additionally, we show that the variants associated with some diseases may preferentially alter the gene expression in one of these cell types. We conclude that our method is an alternative method to detect cell type specific eQTL effects, that may complement generating cell type specific eQTL datasets and that may be applied on other cell types and tissues as well.
Zdroje
1. Hindorff LA, Sethupathy P, Junkins H a, Ramos EM, Mehta JP, et al. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106: 9362–9367. doi: 10.1073/pnas.0903103106 19474294
2. Fehrmann RSN, Jansen RC, Veldink JH, Westra H-J, Arends D, et al. (2011) Trans-eQTLs Reveal That Independent Genetic Variants Associated with a Complex Phenotype Converge on Intermediate Genes, with a Major Role for the HLA. PLoS Genet 7: 14.
3. Brown CD, Mangravite LM, Engelhardt BE (2013) Integrative Modeling of eQTLs and Cis-Regulatory Elements Suggests Mechanisms Underlying Cell Type Specificity of eQTLs. PLoS Genet 9: e1003649. doi: 10.1371/journal.pgen.1003649 23935528
4. Fairfax BPB, Makino S, Radhakrishnan J, Plant K, Leslie S, et al. (2012) Genetics of gene expression in primary immune cells identifies cell-specific master regulators and roles of HLA alleles. Nat Genet 44: 502–510. doi: 10.1038/ng.2205.GENETICS 22446964
5. Fu J, Wolfs MGM, Deelen P, Westra H-J, Fehrmann RSN, et al. (2012) Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression. PLoS Genet 8: e1002431. doi: 10.1371/journal.pgen.1002431 22275870
6. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, et al. (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13: 86. doi: 10.1186/1471-2105-13-86 22568884
7. Houseman EA, Molitor J, Marsit CJ (2014) Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics.
8. Accomando WP, Wiencke JK, Houseman EA, Nelson HH, Kelsey KT (2014) Quantitative reconstruction of leukocyte subsets using DNA methylation. Genome Biol 15: R50. doi: 10.1186/gb-2014-15-3-r50 24598480
9. Jaffe AE, Irizarry RA (2014) Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol 15: R31. doi: 10.1186/gb-2014-15-2-r31 24495553
10. Leek JT, Storey JD (2007) Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet 3: 1724–1735. 17907809
11. Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, et al. (2010) Cell type-specific gene expression differences in complex tissues. Nat Methods 7: 287–289. doi: 10.1038/nmeth.1439 20208531
12. Metspalu A (2004) The Estonian Genome Project. Drug Dev Res 62: 97–101. doi: 10.1002/ddr.10371
13. Tanaka T, Shen J, Abecasis GR, Kisialiou A, Ordovas JM, et al. (2009) Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genet 5: e1000338. doi: 10.1371/journal.pgen.1000338 19148276
14. Hofman A, Darwish Murad S, van Duijn CM, Franco OH, Goedegebure A, et al. (2013) The Rotterdam Study: 2014 objectives and design update. Eur J Epidemiol 28: 889–926. doi: 10.1007/s10654-013-9866-z 24258680
15. Völzke H, Alte D, Schmidt CO, Radke D, Lorbeer R, et al. (2011) Cohort profile: the study of health in Pomerania. Int J Epidemiol 40: 294–307. doi: 10.1093/ije/dyp394 20167617
16. Mehta D, Heim K, Herder C, Carstensen M, Eckstein G, et al. (2013) Impact of common regulatory single-nucleotide variants on gene expression profiles in whole blood. Eur J Hum Genet 21: 48–54. doi: 10.1038/ejhg.2012.106 22692066
17. Inouye M, Silander K, Hamalainen E, Salomaa V, Harald K, et al. (2010) An immune response network associated with blood lipid levels. PLoS Genet 6: e1001113. doi: 10.1371/journal.pgen.1001113 20844574
18. Nalls MA, Couper DJ, Tanaka T, van Rooij FJA, Chen M-H, et al. (2011) Multiple loci are associated with white blood cell phenotypes. PLoS Genet 7: e1002113. doi: 10.1371/journal.pgen.1002113 21738480
19. Crosslin DR, McDavid A, Weston N, Nelson SC, Zheng X, et al. (2012) Genetic variants associated with the white blood cell count in 13,923 subjects in the eMERGE Network. Hum Genet 131: 639–652. doi: 10.1007/s00439-011-1103-9 22037903
20. Grisham MB, Engerson TD, McCord JM, Jones HP (1985) A comparative study of neutrophil purification and function. J Immunol Methods 82: 315–320. 2995497
21. Blueprint DCC Portal (n.d.). Available: http://dcc.blueprint-epigenome.eu/#/home. Accessed 25 November 2014.
22. Westra H-J, Peters MJ, Esko T, Yaghootkar H, Schurmann C, et al. (2013) Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. doi: 10.1038/ng.2756
23. Uhlig HH (2013) Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. Gut 62: 1795–1805. doi: 10.1136/gutjnl-2012-303956 24203055
24. Korzenik JR, Dieckgraefe BK, Valentine JF, Hausman DF, Gilbert MJ (2005) Sargramostim for active Crohn’s disease. N Engl J Med 352: 2193–2201. 15917384
25. Ghosh S, Goldin E, Gordon FH, Malchow HA, Rask-Madsen J, et al. (2003) Natalizumab for active Crohn’s disease. N Engl J Med 348: 24–32. 12510039
26. Montgomery SM, Wakefield AJ, Ekbom A (2003) Sex-Specific Risks for Pediatric Onset Among Patients With Crohn’s Disease. Clin Gastroenterol Hepatol 1: 303–309. doi: 10.1016/S1542-3565(03)00135-6 15017672
27. Goodman WA, Garg RR, Reuter BK, Mattioli B, Rissman EF, et al. (2014) Loss of estrogen-mediated immunoprotection underlies female gender bias in experimental Crohn’s-like ileitis. Mucosal Immunol 7: 1255–1265. doi: 10.1038/mi.2014.15 24621993
28. Preininger M, Arafat D, Kim J, Nath AP, Idaghdour Y, et al. (2013) Blood-informative transcripts define nine common axes of peripheral blood gene expression. PLoS Genet 9: e1003362. doi: 10.1371/journal.pgen.1003362 23516379
29. Fehrmann RSN, Karjalainen JM, Krajewska M, Westra H-J, Maloney D, et al. (2015) Gene expression analysis identifies global gene dosage sensitivity in cancer. Nat Genet 47: 115–125. doi: 10.1038/ng.3173 25581432
30. Lappalainen T, Sammeth M, Friedländer MR, ‘t Hoen PAC, Monlong J, et al. (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501: 506–511. doi: 10.1038/nature12531 24037378
31. Zhernakova D V, de Klerk E, Westra H-J, Mastrokolias A, Amini S, et al. (2013) DeepSAGE reveals genetic variants associated with alternative polyadenylation and expression of coding and non-coding transcripts. PLoS Genet 9: e1003594. doi: 10.1371/journal.pgen.1003594 23818875
32. The International HapMap Consortium (2003) The International HapMap Project. 426: 789–796. 14685227
33. Westra H-J, Jansen RC, Fehrmann RSN, te Meerman GJ, van Heel D, et al. (2011) MixupMapper: correcting sample mix-ups in genome-wide datasets increases power to detect small genetic effects. Bioinformatics 27: 2104–2111. doi: 10.1093/bioinformatics/btr323 21653519
34. Dubois PCA, Trynka G, Franke L, Hunt KA, Romanos J, et al. (2010) Multiple common variants for celiac disease influencing immune gene expression. Nat Genet 42: 295–302. doi: 10.1038/ng.543 20190752
35. Whitlock MC (2005) Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach. J Evol Biol 18: 1368–1373. doi: 10.1111/j.1420-9101.2005.00917.x 16135132
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 5
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Drosophila Spaghetti and Doubletime Link the Circadian Clock and Light to Caspases, Apoptosis and Tauopathy
- Autoselection of Cytoplasmic Yeast Virus Like Elements Encoding Toxin/Antitoxin Systems Involves a Nuclear Barrier for Immunity Gene Expression
- Parp3 Negatively Regulates Immunoglobulin Class Switch Recombination
- PERK Limits Lifespan by Promoting Intestinal Stem Cell Proliferation in Response to ER Stress