A Year of Infection in the Intensive Care Unit: Prospective Whole Genome Sequencing of Bacterial Clinical Isolates Reveals Cryptic Transmissions and Novel Microbiota
Bacterial whole genome sequencing is becoming increasingly common to microbiological research, but despite its great potential, has not yet been meaningfully integrated into clinical care. Here, we generated whole genome sequencing data from nearly all of the bacterial isolates prospectively collected from a hospital’s intensive care units over an entire year. Our analysis identifies novel microbiota in hospitalized patients, a high incidence of patient infection with multiple unrelated lineages of a bacterial species, and the possibility of cryptic transmission of bacteria among patients. Our study is unprecedented in providing a broad and unbiased view of bacterial infections that affect the hospital’s sickest patients, and demonstrates the extent of information that can be learned from comprehensive genomic surveillance of clinical bacterial isolates over an extended period of time.
Vyšlo v časopise:
A Year of Infection in the Intensive Care Unit: Prospective Whole Genome Sequencing of Bacterial Clinical Isolates Reveals Cryptic Transmissions and Novel Microbiota. PLoS Genet 11(7): e32767. doi:10.1371/journal.pgen.1005413
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1005413
Souhrn
Bacterial whole genome sequencing is becoming increasingly common to microbiological research, but despite its great potential, has not yet been meaningfully integrated into clinical care. Here, we generated whole genome sequencing data from nearly all of the bacterial isolates prospectively collected from a hospital’s intensive care units over an entire year. Our analysis identifies novel microbiota in hospitalized patients, a high incidence of patient infection with multiple unrelated lineages of a bacterial species, and the possibility of cryptic transmission of bacteria among patients. Our study is unprecedented in providing a broad and unbiased view of bacterial infections that affect the hospital’s sickest patients, and demonstrates the extent of information that can be learned from comprehensive genomic surveillance of clinical bacterial isolates over an extended period of time.
Zdroje
1. Council NI (2000) National Intelligence Estimate 99-17D: The Global Infectious Disease Threat and Its Implications for the United States.
2. Anevlavis S, Bouros D (2010) Community acquired bacterial pneumonia. Expert Opin Pharmacother 11: 361–374. doi: 10.1517/14656560903508770 20085502
3. File TM Jr. (2004) Streptococcus pneumoniae and community-acquired pneumonia: a cause for concern. Am J Med 117 Suppl 3A: 39S–50S. 15360096
4. Stone PW (2009) Economic burden of healthcare-associated infections: an American perspective. Expert Rev Pharmacoecon Outcomes Res 9: 417–422. doi: 10.1586/erp.09.53 19817525
5. Klevens RM, Edwards JR, Richards CL Jr., Horan TC, Gaynes RP, et al. (2007) Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep 122: 160–166. 17357358
6. Linden PK (2009) Approach to the immunocompromised host with infection in the intensive care unit. Infect Dis Clin North Am 23: 535–556. doi: 10.1016/j.idc.2009.04.014 19665082
7. Richards MJ, Edwards JR, Culver DH, Gaynes RP (1999) Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit Care Med 27: 887–892. 10362409
8. Hiramatsu K (2001) Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infect Dis 1: 147–155. 11871491
9. Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Group NCSP, et al. (2012) Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 4: 148ra116. doi: 10.1126/scitranslmed.3004129 22914622
10. Cetinkaya Y, Falk P, Mayhall CG (2000) Vancomycin-resistant enterococci. Clin Microbiol Rev 13: 686–707. 11023964
11. Conlan S, Thomas PJ, Deming C, Park M, Lau AF, et al. (2014) Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci Transl Med 6: 254ra126. doi: 10.1126/scitranslmed.3009845 25232178
12. Romling U, Wingender J, Muller H, Tummler B (1994) A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl Environ Microbiol 60: 1734–1738. 8031075
13. Koser CU, Ellington MJ, Cartwright EJ, Gillespie SH, Brown NM, et al. (2012) Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog 8: e1002824. doi: 10.1371/journal.ppat.1002824 22876174
14. Salipante SJ, Roach DJ, Kitzman JO, Snyder MW, Stackhouse B, et al. (2014) Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains. Genome Res 25: 119–128. doi: 10.1101/gr.180190.114 25373147
15. Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK, et al. (2010) Evolution of MRSA during hospital transmission and intercontinental spread. Science 327: 469–474. doi: 10.1126/science.1182395 20093474
16. Price JR, Golubchik T, Cole K, Wilson DJ, Crook DW, et al. (2014) Whole-genome sequencing shows that patient-to-patient transmission rarely accounts for acquisition of Staphylococcus aureus in an intensive care unit. Clin Infect Dis 58: 609–618. doi: 10.1093/cid/cit807 24336829
17. Harris SR, Cartwright EJ, Torok ME, Holden MT, Brown NM, et al. (2013) Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis 13: 130–136. doi: 10.1016/S1473-3099(12)70268-2 23158674
18. Long SW, Beres SB, Olsen RJ, Musser JM (2014) Absence of patient-to-patient intrahospital transmission of Staphylococcus aureus as determined by whole-genome sequencing. MBio 5: e01692–01614. doi: 10.1128/mBio.01692-14 25293757
19. Tong SY, Holden MT, Nickerson EK, Cooper BS, Koser CU, et al. (2015) Genome sequencing defines phylogeny and spread of methicillin-resistant Staphylococcus aureus in a high transmission setting. Genome Res 25: 111–118. doi: 10.1101/gr.174730.114 25491771
20. Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H, et al. (2007) Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci U S A 104: 9451–9456. 17517606
21. Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, et al. (2013) Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat Genet 45: 1183–1189. doi: 10.1038/ng.2747 23995135
22. Conlan S, Mijares LA, Program NCS, Becker J, Blakesley RW, et al. (2012) Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates. Genome Biol 13: R64. doi: 10.1186/gb-2012-13-7-r64 22830599
23. Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, et al. (2008) The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190: 6881–6893. doi: 10.1128/JB.00619-08 18676672
24. Salipante SJ, Kalapila A, Pottinger PS, Hoogestraat DR, Cummings L, et al. (2015) Characterization of a multidrug-resistant, novel bacteroides genomospecies. Emerg Infect Dis 21: 95–98. doi: 10.3201/eid2101.140662 25529016
25. Schatz MC, Phillippy AM (2012) The rise of a digital immune system. Gigascience 1: 4. doi: 10.1186/2047-217X-1-4 23587178
26. Baron EJ, Miller JM, Weinstein MP, Richter SS, Gilligan PH, et al. (2013) A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)(a). Clin Infect Dis 57: e22–e121. doi: 10.1093/cid/cit278 23845951
27. Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126–19131. doi: 10.1073/pnas.0906412106 19855009
28. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, et al. (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57: 81–91. 17220447
29. Maiden MC (2008) Population genomics: diversity and virulence in the Neisseria. Curr Opin Microbiol 11: 467–471. doi: 10.1016/j.mib.2008.09.002 18822386
30. Salipante SJ, Sengupta DJ, Cummings LA, Robinson A, Kurosawa K, et al. (2014) Whole genome sequencing indicates Corynebacterium jeikeium comprises 4 separate genomospecies and identifies a dominant genomospecies among clinical isolates. Int J Med Microbiol 304: 1001–1010. doi: 10.1016/j.ijmm.2014.07.003 25116839
31. Burton JN, Liachko I, Dunham MJ, Shendure J (2014) Species-level deconvolution of metagenome assemblies with Hi-C-based contact probability maps. G3 (Bethesda) 4: 1339–1346.
32. Mira A, Martin-Cuadrado AB, D'Auria G, Rodriguez-Valera F (2010) The bacterial pan-genome:a new paradigm in microbiology. Int Microbiol 13: 45–57. 20890839
33. Kaas RS, Friis C, Ussery DW, Aarestrup FM (2012) Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics 13: 577. doi: 10.1186/1471-2164-13-577 23114024
34. Lindsay JA (2014) Evolution of Staphylococcus aureus and MRSA during outbreaks. Infect Genet Evol 21: 548–553. doi: 10.1016/j.meegid.2013.04.017 23665384
35. Halachev MR, Chan JZ, Constantinidou CI, Cumley N, Bradley C, et al. (2014) Genomic epidemiology of a protracted hospital outbreak caused by multidrug-resistant Acinetobacter baumannii in Birmingham, England. Genome Med 6: 70.
36. Quick J, Cumley N, Wearn CM, Niebel M, Constantinidou C, et al. (2014) Seeking the source of Pseudomonas aeruginosa infections in a recently opened hospital: an observational study using whole-genome sequencing. BMJ Open 4: e006278. doi: 10.1136/bmjopen-2014-006278 25371418
37. Casadevall AaP, L (2014) Microbiology: Ditch the term pathogen. Nature 516: 165–166. doi: 10.1038/516165a 25503219
38. Worby CJ, Lipsitch M, Hanage WP (2014) Within-host bacterial diversity hinders accurate reconstruction of transmission networks from genomic distance data. PLoS Comput Biol 10: e1003549. doi: 10.1371/journal.pcbi.1003549 24675511
39. Paterson GK, Harrison EM, Murray GG, Welch JJ, Warland JH, et al. (2015) Capturing the cloud of diversity reveals complexity and heterogeneity of MRSA carriage, infection and transmission. Nat Commun 6: 6560. doi: 10.1038/ncomms7560 25814293
40. Golubchik T, Batty EM, Miller RR, Farr H, Young BC, et al. (2013) Within-host evolution of Staphylococcus aureus during asymptomatic carriage. PLoS One 8: e61319. doi: 10.1371/journal.pone.0061319 23658690
41. Salipante SJ, Sengupta DJ, Cummings L, Land T, Hoogestraat DR, et al. (2015) Application of whole genome sequencing for bacterial strain typing in molecular epidemiology. J Clin Microbiol 31: 1072–1079.
42. Chan GJ, Lee AC, Baqui AH, Tan J, Black RE (2013) Risk of early-onset neonatal infection with maternal infection or colonization: a global systematic review and meta-analysis. PLoS Med 10: e1001502. doi: 10.1371/journal.pmed.1001502 23976885
43. Prunier AL, Leclercq R (2005) Role of mutS and mutL genes in hypermutability and recombination in Staphylococcus aureus. J Bacteriol 187: 3455–3464. 15866932
44. Parkhill J, Wren BW (2011) Bacterial epidemiology and biology—lessons from genome sequencing. Genome Biol 12: 230. doi: 10.1186/gb-2011-12-10-230 22027015
45. Pallen MJ, Loman NJ (2011) Are diagnostic and public health bacteriology ready to become branches of genomic medicine? Genome Med 3: 53. doi: 10.1186/gm269 21861847
46. Long SW, Williams D, Valson C, Cantu CC, Cernoch P, et al. (2013) A genomic day in the life of a clinical microbiology laboratory. J Clin Microbiol 51: 1272–1277. doi: 10.1128/JCM.03237-12 23345298
47. Quick J, Ashton P, Calus S, Chatt C, Gossain S, et al. (2015) Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol 16: 114. 26025440
48. Dingle TC, Butler-Wu SM (2013) Maldi-tof mass spectrometry for microorganism identification. Clin Lab Med 33: 589–609. doi: 10.1016/j.cll.2013.03.001 23931840
49. Schlaberg R, Simmon KE, Fisher MA (2012) A systematic approach for discovering novel, clinically relevant bacteria. Emerg Infect Dis 18: 422–430. doi: 10.3201/eid1803.111481 22377371
50. Georgiades K, Raoult D (2010) Defining pathogenic bacterial species in the genomic era. Front Microbiol 1: 151. doi: 10.3389/fmicb.2010.00151 21687765
51. Fitzgerald JR, Sturdevant DE, Mackie SM, Gill SR, Musser JM (2001) Evolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. Proc Natl Acad Sci U S A 98: 8821–8826. 11447287
52. Strommenger B, Bartels MD, Kurt K, Layer F, Rohde SM, et al. (2014) Evolution of methicillin-resistant Staphylococcus aureus towards increasing resistance. J Antimicrob Chemother 69: 616–622. doi: 10.1093/jac/dkt413 24150844
53. Zhang J, van Aartsen JJ, Jiang X, Shao Y, Tai C, et al. (2011) Expansion of the known Klebsiella pneumoniae species gene pool by characterization of novel alien DNA islands integrated into tmRNA gene sites. J Microbiol Methods 84: 283–289. doi: 10.1016/j.mimet.2010.12.016 21182879
54. Koser CU, Holden MT, Ellington MJ, Cartwright EJ, Brown NM, et al. (2012) Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med 366: 2267–2275. doi: 10.1056/NEJMoa1109910 22693998
55. Hornsey M, Loman N, Wareham DW, Ellington MJ, Pallen MJ, et al. (2011) Whole-genome comparison of two Acinetobacter baumannii isolates from a single patient, where resistance developed during tigecycline therapy. J Antimicrob Chemother 66: 1499–1503. doi: 10.1093/jac/dkr168 21565804
56. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, et al. (2008) NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29: 996–1011. doi: 10.1086/591861 18947320
57. Didelot X, Eyre DW, Cule M, Ip CL, Ansari MA, et al. (2012) Microevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biol 13: R118. doi: 10.1186/gb-2012-13-12-r118 23259504
58. Huycke MM, Sahm DF, Gilmore MS (1998) Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis 4: 239–249. 9621194
59. Marchant EA, Boyce GK, Sadarangani M, Lavoie PM (2013) Neonatal sepsis due to coagulase-negative staphylococci. Clin Dev Immunol 2013: 586076. doi: 10.1155/2013/586076 23762094
60. Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y (2006) Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother 50: 43–48. 16377665
61. Becker K, Heilmann C, Peters G (2014) Coagulase-Negative Staphylococci. Clin Microbiol Rev 27: 870–926.
62. Looney WJ, Narita M, Muhlemann K (2009) Stenotrophomonas maltophilia: an emerging opportunist human pathogen. Lancet Infect Dis 9: 312–323. doi: 10.1016/S1473-3099(09)70083-0 19393961
63. Xu H, Jin H, Zhao L, Wei X, Hu L, et al. (2014) A randomized, double-blind comparison of the effectiveness of environmental cleaning between infection control professionals and environmental service workers. Am J Infect Control 43: 92–94. doi: 10.1016/j.ajic.2014.11.009 25556049
64. Prosperi M, Veras N, Azarian T, Rathore M, Nolan D, et al. (2013) Molecular epidemiology of community-associated methicillin-resistant Staphylococcus aureus in the genomic era: a cross-sectional study. Sci Rep 3: 1902. doi: 10.1038/srep01902 23712667
65. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, et al. (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19: 1117–1123. doi: 10.1101/gr.089532.108 19251739
66. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. 2231712
67. Lander ES, Waterman MS (1988) Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2: 231–239. 3294162
68. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760. doi: 10.1093/bioinformatics/btp324 19451168
69. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079. doi: 10.1093/bioinformatics/btp352 19505943
70. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, et al. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6: 80–92.
71. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75. doi: 10.1186/1471-2164-9-75 18261238
72. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658–1659. 16731699
73. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39: W347–352. doi: 10.1093/nar/gkr485 21672955
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 7
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Functional Constraint Profiling of a Viral Protein Reveals Discordance of Evolutionary Conservation and Functionality
- Reversible Oxidation of a Conserved Methionine in the Nuclear Export Sequence Determines Subcellular Distribution and Activity of the Fungal Nitrate Regulator NirA
- Modeling Implicates in Nephropathy: Evidence for Dominant Negative Effects and Epistasis under Anemic Stress
- Nutritional Control of DNA Replication Initiation through the Proteolysis and Regulated Translation of DnaA