Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics
Embryonic development necessitates a delicate balancing act. On one hand, precise regulation of the expression of developmental genes is crucial for the maintenance of morphology and function. On the other hand, these same regulatory networks must allow normal development to proceed through genetic variation and environmental changes. To learn how regulatory circuits operate robustly within natural variation, we study the temporal expression profiles of key regulatory genes in the Mediterranean sea urchin, Paracentrotus lividus, and compare them to those of its Pacific Ocean relative, Strongylocentrotus purpuratus. These species shared a common ancestor about 40 million years ago and show highly similar embryonic morphologies. Our studies reveal highly reproducible gene initiation times that show lower variations than the variations in maximal mRNA levels within the species (Pl). We observe high interspecies conservation of the temporal order of gene activation within regulatory circuits and some cases of divergence. This conservation was even more profound when expression levels were normalized and scaled to the different developmental rates between the species. Our findings highlight that, despite genetic variations and different growth conditions, expression dynamics in developmental gene regulatory networks are extremely conserved over 40 million years of evolution.
Vyšlo v časopise:
Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics. PLoS Genet 11(7): e32767. doi:10.1371/journal.pgen.1005435
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1005435
Souhrn
Embryonic development necessitates a delicate balancing act. On one hand, precise regulation of the expression of developmental genes is crucial for the maintenance of morphology and function. On the other hand, these same regulatory networks must allow normal development to proceed through genetic variation and environmental changes. To learn how regulatory circuits operate robustly within natural variation, we study the temporal expression profiles of key regulatory genes in the Mediterranean sea urchin, Paracentrotus lividus, and compare them to those of its Pacific Ocean relative, Strongylocentrotus purpuratus. These species shared a common ancestor about 40 million years ago and show highly similar embryonic morphologies. Our studies reveal highly reproducible gene initiation times that show lower variations than the variations in maximal mRNA levels within the species (Pl). We observe high interspecies conservation of the temporal order of gene activation within regulatory circuits and some cases of divergence. This conservation was even more profound when expression levels were normalized and scaled to the different developmental rates between the species. Our findings highlight that, despite genetic variations and different growth conditions, expression dynamics in developmental gene regulatory networks are extremely conserved over 40 million years of evolution.
Zdroje
1. Garfield DA, Runcie DE, Babbitt CC, Haygood R, Nielsen WJ, et al. (2013) The impact of gene expression variation on the robustness and evolvability of a developmental gene regulatory network. PLoS Biol 11: e1001696. doi: 10.1371/journal.pbio.1001696 24204211
2. Levin M, Hashimshony T, Wagner F, Yanai I (2012) Developmental milestones punctuate gene expression in the Caenorhabditis embryo. Dev Cell 22: 1101–1108. doi: 10.1016/j.devcel.2012.04.004 22560298
3. Runcie DE, Garfield DA, Babbitt CC, Wygoda JA, Mukherjee S, et al. (2012) Genetics of gene expression responses to temperature stress in a sea urchin gene network. Mol Ecol 21: 4547–4562. doi: 10.1111/j.1365-294X.2012.05717.x 22856327
4. Payne JL, Wagner A (2014) The robustness and evolvability of transcription factor binding sites. Science 343: 875–877. doi: 10.1126/science.1249046 24558158
5. Albergante L, Blow JJ, Newman TJ (2014) Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks. Elife 3: e02863. doi: 10.7554/eLife.02863 25182846
6. Peter IS, Davidson EH (2011) Evolution of gene regulatory networks controlling body plan development. Cell 144: 970–985. doi: 10.1016/j.cell.2011.02.017 21414487
7. Carroll SB (2011) Evolution. How great wings can look alike. Science 333: 1100–1101. doi: 10.1126/science.1211025 21868661
8. Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457: 818–823. doi: 10.1038/nature07891 19212399
9. Ben-Tabou de-Leon S, Davidson EH (2009) Modeling the dynamics of transcriptional gene regulatory networks for animal development. Dev Biol 325: 317–328. doi: 10.1016/j.ydbio.2008.10.043 19028486
10. Istrail S, Ben-Tabou de-Leon S, Davidson EH (2007) The regulatory genome and the computer. Dev Biol 310: 187–195. 17822690
11. Ben-Tabou de-Leon S (2010) Perturbation analysis analyzed—mathematical modeling of intact and perturbed gene regulatory circuits for animal development. Dev Biol 344: 1110–1118. doi: 10.1016/j.ydbio.2010.06.020 20599898
12. Peter IS, Davidson EH (2011) A gene regulatory network controlling the embryonic specification of endoderm. Nature 474: 635–639. doi: 10.1038/nature10100 21623371
13. Oliveri P, Tu Q, Davidson EH (2008) Global regulatory logic for specification of an embryonic cell lineage. Proc Natl Acad Sci U S A 105: 5955–5962. doi: 10.1073/pnas.0711220105 18413610
14. Li E, Materna SC, Davidson EH (2013) New regulatory circuit controlling spatial and temporal gene expression in the sea urchin embryo oral ectoderm GRN. Dev Biol 382: 268–279. doi: 10.1016/j.ydbio.2013.07.027 23933172
15. Ben-Tabou de-Leon S, Su YH, Lin KT, Li E, Davidson EH (2013) Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown. Dev Biol 374: 245–254. doi: 10.1016/j.ydbio.2012.11.013 23211652
16. Saudemont A, Haillot E, Mekpoh F, Bessodes N, Quirin M, et al. (2010) Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm. PLoS Genet 6: e1001259. doi: 10.1371/journal.pgen.1001259 21203442
17. Lapraz F, Besnardeau L, Lepage T (2009) Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol 7: e1000248. doi: 10.1371/journal.pbio.1000248 19956794
18. Robert N, Lhomond G, Schubert M, Croce JC (2014) A comprehensive survey of wnt and frizzled expression in the sea urchin Paracentrotus lividus. Genesis 52: 235–250. doi: 10.1002/dvg.22754 24550167
19. Materna SC, Davidson EH (2012) A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos. Dev Biol 364: 77–87. doi: 10.1016/j.ydbio.2012.01.017 22306924
20. Li E, Materna SC, Davidson EH (2012) Direct and indirect control of oral ectoderm regulatory gene expression by Nodal signaling in the sea urchin embryo. Dev Biol 369: 377–385. doi: 10.1016/j.ydbio.2012.06.022 22771578
21. Materna SC, Howard-Ashby M, Gray RF, Davidson EH (2006) The C2H2 zinc finger genes of Strongylocentrotus purpuratus and their expression in embryonic development. Dev Biol 300: 108–120. 16997293
22. Howard-Ashby M, Materna SC, Brown CT, Chen L, Cameron RA, et al. (2006) Gene families encoding transcription factors expressed in early development of Strongylocentrotus purpuratus. Dev Biol 300: 90–107. 17054934
23. Howard-Ashby M, Materna SC, Brown CT, Chen L, Cameron RA, et al. (2006) Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development. Dev Biol 300: 74–89. 17055477
24. Range R, Lapraz F, Quirin M, Marro S, Besnardeau L, et al. (2007) Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1. Development 134: 3649–3664. 17855430
25. Nam J, Su YH, Lee PY, Robertson AJ, Coffman JA, et al. (2007) Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network. Dev Biol 306: 860–869. 17451671
26. Materna SC, Nam J, Davidson EH (2010) High accuracy, high-resolution prevalence measurement for the majority of locally expressed regulatory genes in early sea urchin development. Gene Expr Patterns 10: 177–184. doi: 10.1016/j.gep.2010.04.002 20398801
27. Ransick A, Davidson EH (2012) Cis-regulatory logic driving glial cells missing: self-sustaining circuitry in later embryogenesis. Dev Biol 364: 259–267. 22509525
28. Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution. San-Diego: Academic press.
29. Bolouri H, Davidson EH (2010) The gene regulatory network basis of the "community effect," and analysis of a sea urchin embryo example. Dev Biol 340: 170–178. doi: 10.1016/j.ydbio.2009.06.007 19523466
30. Mangan S, Alon U (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A 100: 11980–11985. 14530388
31. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, et al. (2002) Network motifs: simple building blocks of complex networks. Science 298: 824–827. 12399590
32. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8: 450–461. 17510665
33. Li E, Cui M, Peter IS, Davidson EH (2014) Encoding regulatory state boundaries in the pregastrular oral ectoderm of the sea urchin embryo. Proc Natl Acad Sci U S A 111: E906–913. doi: 10.1073/pnas.1323105111 24556994
34. Materna SC, Ransick A, Li E, Davidson EH (2013) Diversification of oral and aboral mesodermal regulatory states in pregastrular sea urchin embryos. Dev Biol 375: 92–104. doi: 10.1016/j.ydbio.2012.11.033 23261933
35. Yanai I, Peshkin L, Jorgensen P, Kirschner MW (2011) Mapping gene expression in two Xenopus species: evolutionary constraints and developmental flexibility. Dev Cell 20: 483–496. doi: 10.1016/j.devcel.2011.03.015 21497761
36. Ben-Tabou de Leon S, Davidson EH (2010) Information processing at the foxa node of the sea urchin endomesoderm specification network. Proc Natl Acad Sci U S A 107: 10103–10108. doi: 10.1073/pnas.1004824107 20479235
37. Damle S, Davidson EH (2011) Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus. Dev Biol 357: 505–517. doi: 10.1016/j.ydbio.2011.06.016 21723273
38. Revilla-i-Domingo R, Minokawa T, Davidson EH (2004) R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres. Dev Biol 274: 438–451. 15385170
39. Ransick A, Davidson EH (2006) cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. Dev Biol 297: 587–602. 16925988
40. Croce JC, McClay DR (2010) Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo. Development 137: 83–91. doi: 10.1242/dev.044149 20023163
41. Peterson RE, McClay DR (2005) A Fringe-modified Notch signal affects specification of mesoderm and endoderm in the sea urchin embryo. Dev Biol 282: 126–137. 15936334
42. Lee PY, Davidson EH (2004) Expression of Spgatae, the Strongylocentrotus purpuratus ortholog of vertebrate GATA4/5/6 factors. Gene Expr Patterns 5: 161–165. 15567710
43. Lee PY, Nam J, Davidson EH (2007) Exclusive developmental functions of gatae cis-regulatory modules in the Strongylocentrorus purpuratus embryo. Dev Biol 307: 434–445. 17570356
44. Peter IS, Davidson EH (2010) The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage. Dev Biol 340: 188–199. doi: 10.1016/j.ydbio.2009.10.037 19895806
45. Wikramanayake AH, Peterson R, Chen J, Huang L, Bince JM, et al. (2004) Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages. Genesis 39: 194–205. 15282746
46. Galvani E, Alfieri R, Giovannetti E, Cavazzoni A, La Monica S, et al. (2013) Epidermal growth factor receptor tyrosine kinase inhibitors: current status and future perspectives in the development of novel irreversible inhibitors for the treatment of mutant non-small cell lung cancer. Curr Pharm Des 19: 818–832. 22973953
47. Peter I, Davidson EH (2010) Genomic programs for endoderm specification in sea urchin embryos. Developmental Biology 344: 469–469.
48. Minokawa T, Wikramanayake AH, Davidson EH (2005) cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network. Dev Biol 288: 545–558. 16289024
49. Smith J, Theodoris C, Davidson EH (2007) A gene regulatory network subcircuit drives a dynamic pattern of gene expression. Science 318: 794–797. 17975065
50. Smith J, Davidson EH (2008) Gene regulatory network subcircuit controlling a dynamic spatial pattern of signaling in the sea urchin embryo. Proc Natl Acad Sci U S A 105: 20089–20094. doi: 10.1073/pnas.0806442105 19104065
51. Smith J, Kraemer E, Liu H, Theodoris C, Davidson E (2008) A spatially dynamic cohort of regulatory genes in the endomesodermal gene network of the sea urchin embryo. Dev Biol 313: 863–875. 18061160
52. Duboc V, Rottinger E, Besnardeau L, Lepage T (2004) Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Dev Cell 6: 397–410. 15030762
53. Duboc V, Lapraz F, Saudemont A, Bessodes N, Mekpoh F, et al. (2010) Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo. Development 137: 223–235. doi: 10.1242/dev.042531 20040489
54. Yaguchi S, Yaguchi J, Angerer RC, Angerer LM (2008) A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos. Dev Cell 14: 97–107. doi: 10.1016/j.devcel.2007.10.012 18194656
55. Duloquin L, Lhomond G, Gache C (2007) Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton. Development 134: 2293–2302. 17507391
56. Hansen AS, O'Shea EK (2013) Promoter decoding of transcription factor dynamics involves a trade-off between noise and control of gene expression. Mol Syst Biol 9: 704. doi: 10.1038/msb.2013.56 24189399
57. Raser JM, O'Shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304: 1811–1814. 15166317
58. Hinman VF, Yankura KA, McCauley BS (2009) Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms. Biochim Biophys Acta 1789: 326–332. doi: 10.1016/j.bbagrm.2009.01.004 19284985
59. Hinman VF, Nguyen AT, Cameron RA, Davidson EH (2003) Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proc Natl Acad Sci U S A 100: 13356–13361. 14595011
60. McCauley BS, Weideman EP, Hinman VF (2010) A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos. Dev Biol 340: 200–208. doi: 10.1016/j.ydbio.2009.11.020 19941847
61. McCauley BS, Wright EP, Exner C, Kitazawa C, Hinman VF (2012) Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms. Evodevo 3: 17. doi: 10.1186/2041-9139-3-17 22877149
62. Yankura KA, Koechlein CS, Cryan AF, Cheatle A, Hinman VF (2013) Gene regulatory network for neurogenesis in a sea star embryo connects broad neural specification and localized patterning. Proc Natl Acad Sci U S A 110: 8591–8596. doi: 10.1073/pnas.1220903110 23650356
63. Kuntz SG, Eisen MB (2014) Drosophila embryogenesis scales uniformly across temperature in developmentally diverse species. PLoS Genet 10: e1004293. doi: 10.1371/journal.pgen.1004293 24762628
64. Hornung G, Barkai N (2008) Noise propagation and signaling sensitivity in biological networks: a role for positive feedback. PLoS Comput Biol 4: e8. doi: 10.1371/journal.pcbi.0040008 18179281
65. Zhang H, Chen Y (2012) Noise propagation in gene regulation networks involving interlinked positive and negative feedback loops. PLoS One 7: e51840. doi: 10.1371/journal.pone.0051840 23284787
66. Adler M, Mayo A, Alon U (2014) Logarithmic and power law input-output relations in sensory systems with fold-change detection. PLoS Comput Biol 10: e1003781. doi: 10.1371/journal.pcbi.1003781 25121598
67. Shoval O, Goentoro L, Hart Y, Mayo A, Sontag E, et al. (2010) Fold-change detection and scalar symmetry of sensory input fields. Proc Natl Acad Sci U S A 107: 15995–16000. doi: 10.1073/pnas.1002352107 20729472
68. Goentoro L, Kirschner MW (2009) Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. Mol Cell 36: 872–884. doi: 10.1016/j.molcel.2009.11.017 20005849
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 7
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Functional Constraint Profiling of a Viral Protein Reveals Discordance of Evolutionary Conservation and Functionality
- Reversible Oxidation of a Conserved Methionine in the Nuclear Export Sequence Determines Subcellular Distribution and Activity of the Fungal Nitrate Regulator NirA
- Modeling Implicates in Nephropathy: Evidence for Dominant Negative Effects and Epistasis under Anemic Stress
- Nutritional Control of DNA Replication Initiation through the Proteolysis and Regulated Translation of DnaA