#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Novel Role for p110β PI 3-Kinase in Male Fertility through Regulation of Androgen Receptor Activity in Sertoli Cells


Class I PI3Ks are important signalling enzymes and drug targets in cancer and inflammation. We report that p110α and p110β, the two ubiquitously expressed class I PI3K isoforms, control fertility, with no evidence for such a role for p110δ, a PI3K highly expressed in leukocytes. Infertility is therefore a possible but reversible side-effect of PI3K-targeted therapies. Using a new mouse model of systemic p110β inactivation, we found that p110β is critical for ensuring the quality of eggs in females and for sperm formation in males. p110β inactivation leads to a specific blockade in sperm development, without affecting the spermatogenic stem cell pool. This, together with the observation that p110β inactivation has no detectable organismal side effects in the adult stage, makes this kinase a potential drug target for a male contraceptive. Besides its previously reported role in the spermatogenic cells themselves, we now report that p110β also regulates the action of androgens, the male sex hormones, specifically in the Sertoli cells that surround the developing sperm, without affecting androgen action in other tissues. In cancer, however, p110β may acquire the capacity to regulate androgen action in tissues other than Sertoli cells, as was previously documented in prostate cancer.


Vyšlo v časopise: Novel Role for p110β PI 3-Kinase in Male Fertility through Regulation of Androgen Receptor Activity in Sertoli Cells. PLoS Genet 11(7): e32767. doi:10.1371/journal.pgen.1005304
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005304

Souhrn

Class I PI3Ks are important signalling enzymes and drug targets in cancer and inflammation. We report that p110α and p110β, the two ubiquitously expressed class I PI3K isoforms, control fertility, with no evidence for such a role for p110δ, a PI3K highly expressed in leukocytes. Infertility is therefore a possible but reversible side-effect of PI3K-targeted therapies. Using a new mouse model of systemic p110β inactivation, we found that p110β is critical for ensuring the quality of eggs in females and for sperm formation in males. p110β inactivation leads to a specific blockade in sperm development, without affecting the spermatogenic stem cell pool. This, together with the observation that p110β inactivation has no detectable organismal side effects in the adult stage, makes this kinase a potential drug target for a male contraceptive. Besides its previously reported role in the spermatogenic cells themselves, we now report that p110β also regulates the action of androgens, the male sex hormones, specifically in the Sertoli cells that surround the developing sperm, without affecting androgen action in other tissues. In cancer, however, p110β may acquire the capacity to regulate androgen action in tissues other than Sertoli cells, as was previously documented in prostate cancer.


Zdroje

1. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11: 329–341. doi: 10.1038/nrm2882 20379207

2. Wong KK, Engelman JA, Cantley LC (2010) Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 20: 87–90. doi: 10.1016/j.gde.2009.11.002 20006486

3. Braccini L, Ciraolo E, Martini M, Pirali T, Germena G, et al. (2012) PI3K keeps the balance between metabolism and cancer. Adv Biol Regul 52: 389–405. doi: 10.1016/j.jbior.2012.04.002 22884032

4. Rodon J, Dienstmann R, Serra V, Tabernero J (2013) Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol 10: 143–153. doi: 10.1038/nrclinonc.2013.10 23400000

5. Whitehead MA, Bombardieri M, Pitzalis C, Vanhaesebroeck B (2012) Isoform-selective induction of human p110delta PI3K expression by TNFalpha: identification of a new and inducible PIK3CD promoter. Biochem J 443: 857–867. doi: 10.1042/BJ20112214 22375552

6. Vanhaesebroeck B, Ali K, Bilancio A, Geering B, Foukas LC (2005) Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem Sci 30: 194–204. 15817396

7. Hirsch E, Braccini L, Ciraolo E, Morello F, Perino A (2009) Twice upon a time: PI3K's secret double life exposed. Trends Biochem Sci 34: 244–248. doi: 10.1016/j.tibs.2009.02.003 19376709

8. Bi L, Okabe I, Bernard DJ, Nussbaum RL (2002) Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI 3-kinase. Mamm Genome 13: 169–172. 11919689

9. Guillermet-Guibert J, Bjorklof K, Salpekar A, Gonella C, Ramadani F, et al. (2008) The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma. Proc Natl Acad Sci U S A 105: 8292–8297. doi: 10.1073/pnas.0707761105 18544649

10. Kulkarni S, Sitaru C, Jakus Z, Anderson KE, Damoulakis G, et al. (2011) PI3Kbeta plays a critical role in neutrophil activation by immune complexes. Sci Signal 4: ra23.

11. Ciraolo E, Iezzi M, Marone R, Marengo S, Curcio C, et al. (2008) Phosphoinositide 3-kinase p110beta activity: key role in metabolism and mammary gland cancer but not development. Sci Signal 1: ra3.

12. Ciraolo E, Morello F, Hobbs RM, Wolf F, Marone R, et al. (2010) Essential role of the p110beta subunit of phosphoinositide 3-OH kinase in male fertility. Mol Biol Cell 21: 704–711. doi: 10.1091/mbc.E09-08-0744 20053680

13. Kimura T, Suzuki A, Fujita Y, Yomogida K, Lomeli H, et al. (2003) Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production. Development 130: 1691–1700. 12620992

14. Reddy P, Liu L, Adhikari D, Jagarlamudi K, Rajareddy S, et al. (2008) Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 319: 611–613. doi: 10.1126/science.1152257 18239123

15. Goertz MJ, Wu Z, Gallardo TD, Hamra FK, Castrillon DH (2011) Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis. J Clin Invest 121: 3456–3466. doi: 10.1172/JCI57984 21865646

16. Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, et al. (2001) Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 15: 2203–2208. 11544177

17. Dummler B, Tschopp O, Hynx D, Yang ZZ, Dirnhofer S, et al. (2006) Life with a single isoform of Akt: mice lacking Akt2 and Akt3 are viable but display impaired glucose homeostasis and growth deficiencies. Mol Cell Biol 26: 8042–8051. 16923958

18. Li Q, He H, Zhang YL, Li XM, Guo X, et al. (2013) Phosphoinositide 3-Kinase p110delta Mediates Estrogen- and FSH-Stimulated Ovarian Follicle Growth. Mol Endocrinol 27: 1468–1482. doi: 10.1210/me.2013-1082 23820902

19. Blume-Jensen P, Jiang G, Hyman R, Lee KF, O'Gorman S, et al. (2000) Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3'-kinase is essential for male fertility. Nat Genet 24: 157–162. 10655061

20. Kissel H, Timokhina I, Hardy MP, Rothschild G, Tajima Y, et al. (2000) Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses. EMBO J 19: 1312–1326. 10716931

21. Ali K, Bilancio A, Thomas M, Pearce W, Gilfillan AM, et al. (2004) Essential role for the p110delta phosphoinositide 3-kinase in the allergic response. Nature 431: 1007–1011. 15496927

22. Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S, et al. (2006) Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441: 366–370. 16625210

23. Graupera M, Guillermet-Guibert J, Foukas LC, Phng LK, Cain RJ, et al. (2008) Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature 453: 662–666. doi: 10.1038/nature06892 18449193

24. Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S, et al. (2002) Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 297: 1031–1034. 12130661

25. O'Shaughnessy PJ, Morris ID, Huhtaniemi I, Baker PJ, Abel MH (2009) Role of androgen and gonadotrophins in the development and function of the Sertoli cells and Leydig cells: data from mutant and genetically modified mice. Mol Cell Endocrinol 306: 2–8. doi: 10.1016/j.mce.2008.11.005 19059463

26. Borg CL, Wolski KM, Gibbs GM, O'Bryan MK (2010) Phenotyping male infertility in the mouse: how to get the most out of a 'non-performer'. Hum Reprod Update 16: 205–224. doi: 10.1093/humupd/dmp032 19758979

27. De Gendt K, Atanassova N, Tan KA, de Franca LR, Parreira GG, et al. (2005) Development and function of the adult generation of Leydig cells in mice with Sertoli cell-selective or total ablation of the androgen receptor. Endocrinology 146: 4117–4126. 15919750

28. Lecureuil C, Fontaine I, Crepieux P, Guillou F (2002) Sertoli and granulosa cell-specific Cre recombinase activity in transgenic mice. Genesis 33: 114–118. 12124943

29. De Gendt K, Swinnen JV, Saunders PT, Schoonjans L, Dewerchin M, et al. (2004) A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci U S A 101: 1327–1332. 14745012

30. Wong CH, Xia W, Lee NP, Mruk DD, Lee WM, et al. (2005) Regulation of ectoplasmic specialization dynamics in the seminiferous epithelium by focal adhesion-associated proteins in testosterone-suppressed rat testes. Endocrinology 146: 1192–1204. 15591141

31. Shupe J, Cheng J, Puri P, Kostereva N, Walker WH (2011) Regulation of Sertoli-germ cell adhesion and sperm release by FSH and nonclassical testosterone signaling. Mol Endocrinol 25: 238–252. doi: 10.1210/me.2010-0030 21177760

32. Hazra R, Corcoran L, Robson M, McTavish KJ, Upton D, et al. (2013) Temporal role of Sertoli cell androgen receptor expression in spermatogenic development. Mol Endocrinol 27: 12–24. doi: 10.1210/me.2012-1219 23160479

33. Willems A, De Gendt K, Allemeersch J, Smith LB, Welsh M, et al. (2010) Early effects of Sertoli cell-selective androgen receptor ablation on testicular gene expression. Int J Androl 33: 507–517. doi: 10.1111/j.1365-2605.2009.00964.x 19392831

34. Maclean JA 2nd, Chen MA, Wayne CM, Bruce SR, Rao M, et al. (2005) Rhox: a new homeobox gene cluster. Cell 120: 369–382. 15707895

35. O'Hara L, McInnes K, Simitsidellis I, Morgan S, Atanassova N, et al. (2014) Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. FASEB J ahead of print.

36. Wang RS, Yeh S, Tzeng CR, Chang C (2009) Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev 30: 119–132. doi: 10.1210/er.2008-0025 19176467

37. De Gendt K, Verhoeven G (2012) Tissue- and cell-specific functions of the androgen receptor revealed through conditional knockout models in mice. Mol Cell Endocrinol 352: 13–25. doi: 10.1016/j.mce.2011.08.008 21871526

38. Denolet E, De Gendt K, Allemeersch J, Engelen K, Marchal K, et al. (2006) The effect of a sertoli cell-selective knockout of the androgen receptor on testicular gene expression in prepubertal mice. Mol Endocrinol 20: 321–334. 16166195

39. Eskola V, Ryhanen P, Savisalo M, Rannikko A, Kananen K, et al. (1998) Stable transfection of the rat follicle-stimulating hormone receptor complementary DNA into an immortalized murine Sertoli cell line. Mol Cell Endocrinol 139: 143–152. 9705082

40. Schauwaers K, De Gendt K, Saunders PT, Atanassova N, Haelens A, et al. (2007) Loss of androgen receptor binding to selective androgen response elements causes a reproductive phenotype in a knockin mouse model. Proc Natl Acad Sci U S A 104: 4961–4966. 17360365

41. Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, et al. (1997) P110delta, a novel phosphoinositide 3-kinase in leukocytes. Proc Natl Acad Sci U S A 94: 4330–4335. 9113989

42. Sun J, Pedersen M, Ronnstrand L (2008) Gab2 is involved in differential phosphoinositide 3-kinase signaling by two splice forms of c-Kit. J Biol Chem 283: 27444–27451. doi: 10.1074/jbc.M709703200 18697750

43. Dupont J, Musnier A, Decourtye J, Boulo T, Lecureuil C, et al. (2010) FSH-stimulated PTEN activity accounts for the lack of FSH mitogenic effect in prepubertal rat Sertoli cells. Mol Cell Endocrinol 315: 271–276. doi: 10.1016/j.mce.2009.09.016 19778579

44. Zhu Q, Youn H, Tang J, Tawfik O, Dennis K, et al. (2008) Phosphoinositide 3-OH kinase p85alpha and p110beta are essential for androgen receptor transactivation and tumor progression in prostate cancers. Oncogene 27: 4569–4579. doi: 10.1038/onc.2008.91 18372911

45. Lin HK, Hu YC, Lee DK, Chang C (2004) Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells. Mol Endocrinol 18: 2409–2423. 15205473

46. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, et al. (2011) Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19: 575–586. doi: 10.1016/j.ccr.2011.04.008 21575859

47. Ketelslegers JM, Catt KJ (1974) Receptor binding properties of 125I-hFSH prepared by enzymatic iodination. J Clin Endocrinol Metab 39: 1159–1162. 4372248

48. Abel MH, Baker PJ, Charlton HM, Monteiro A, Verhoeven G, et al. (2008) Spermatogenesis and sertoli cell activity in mice lacking sertoli cell receptors for follicle-stimulating hormone and androgen. Endocrinology 149: 3279–3285. doi: 10.1210/en.2008-0086 18403489

49. Dbouk HA, Vadas O, Shymanets A, Burke JE, Salamon RS, et al. (2012) G protein-coupled receptor-mediated activation of p110beta by Gbetagamma is required for cellular transformation and invasiveness. Sci Signal 5: ra89.

50. Jia S, Liu Z, Zhang S, Liu P, Zhang L, et al. (2008) Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454: 776–779. doi: 10.1038/nature07091 18594509

51. Kumar A, Fernandez-Capetillo O, Carrera AC (2010) Nuclear phosphoinositide 3-kinase beta controls double-strand break DNA repair. Proc Natl Acad Sci U S A 107: 7491–7496. doi: 10.1073/pnas.0914242107 20368419

52. Kumar A, Redondo-Munoz J, Perez-Garcia V, Cortes I, Chagoyen M, et al. (2011) Nuclear but not cytosolic phosphoinositide 3-kinase beta has an essential function in cell survival. Mol Cell Biol 31: 2122–2133. doi: 10.1128/MCB.01313-10 21383062

53. Zheng W, Gorre N, Shen Y, Noda T, Ogawa W, et al. (2010) Maternal phosphatidylinositol 3-kinase signalling is crucial for embryonic genome activation and preimplantation embryogenesis. EMBO Rep 11: 890–895. doi: 10.1038/embor.2010.144 20930845

54. Kane MT, Morgan PM, Coonan C (1997) Peptide growth factors and preimplantation development. Hum Reprod Update 3: 137–157. 9286738

55. O'Neill C (2008) The potential roles for embryotrophic ligands in preimplantation embryo development. Hum Reprod Update 14: 275–288. doi: 10.1093/humupd/dmn002 18281694

56. Halet G, Viard P, Carroll J (2008) Constitutive PtdIns(3,4,5)P3 synthesis promotes the development and survival of early mammalian embryos. Development 135: 425–429. 18094023

57. Chen J, Torcia S, Xie F, Lin CJ, Cakmak H, et al. (2013) Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes. Nat Cell Biol 15: 1415–1423. doi: 10.1038/ncb2873 24270888

58. Kobayashi T, Yamano S, Murayama S, Ishikawa H, Tokumura A, et al. (1994) Effect of lysophosphatidic acid on the preimplantation development of mouse embryos. FEBS Lett 351: 38–40. 8076690

59. Berenjeno IM, Guillermet-Guibert J, Pearce W, Gray A, Fleming S, et al. (2012) Both p110alpha and p110beta isoforms of PI3K can modulate the impact of loss-of-function of the PTEN tumour suppressor. Biochem J 442: 151–159. doi: 10.1042/BJ20111741 22150431

60. Torbett NE, Luna-Moran A, Knight ZA, Houk A, Moasser M, et al. (2008) A chemical screen in diverse breast cancer cell lines reveals genetic enhancers and suppressors of sensitivity to PI3K isoform-selective inhibition. Biochem J 415: 97–110. doi: 10.1042/BJ20080639 18498248

61. Wee S, Wiederschain D, Maira SM, Loo A, Miller C, et al. (2008) PTEN-deficient cancers depend on PIK3CB. Proc Natl Acad Sci U S A 105: 13057–13062. doi: 10.1073/pnas.0802655105 18755892

62. Arkenau HT MJ, Rose Lemech R, Infante JR, Burris HA, Bang YJ, Eder JP, Herbst RS, Sharma S, Chung HC, Decordova S, Swales KE, Garrett MD, Loftiss JI, Durante M, Russo MW, Suttle BB, Motwani M, Kumar R, De Bono JS; Cannon S (2014) A phase I/II, first-in-human dose-escalation study of GSK2636771 in patients (pts) with PTEN-deficient advanced tumors. J Clin Oncol 32:5s, 2014 (suppl; abstr 2514^).

63. Denolet E, Gendt KD, Swinnen JV, Verrijdt G, Deboel L, et al. (2006) Transfection with steroid-responsive reporter constructs shows glucocorticoid rather than androgen responsiveness in cultured Sertoli cells. J Steroid Biochem Mol Biol 98: 164–173. 16388947

64. Gliki G, Ebnet K, Aurrand-Lions M, Imhof BA, Adams RH (2004) Spermatid differentiation requires the assembly of a cell polarity complex downstream of junctional adhesion molecule-C. Nature 431: 320–324. 15372036

65. Schwenk F, Baron U, Rajewsky K (1995) A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res 23: 5080–5081. 8559668

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#