The Alternative Sigma Factor SigX Controls Bacteriocin Synthesis and Competence, the Two Quorum Sensing Regulated Traits in
Streptococcus mutans is a bacterium of the human dental plaque that contributes to caries development. It controls two important survival mechanisms via a cell-density dependent communication system (quorum sensing): The synthesis of peptide antibiotics, and of a membrane apparatus for genetic competence, i.e. the ability to take up external DNA and integrate it into its own genome. S. mutans synthesizes two different signalling peptides to this end. It has remained elusive, how exactly these signals are propagated within the cell and why only a fraction of the population becomes competent. To actually observe under the microscope which bacterium in the population is activated, and which genes are required for the activation, we constructed strains of S. mutans that reported on the transcription of a gene by starting to fluoresce green. We even constructed strains that reported on two genes simultaneously, by fluorescing either green or blue or both. With these tools, and by additionally knocking out or modifying key genes as needed, we investigated the complete signaling cascade under various conditions. Thus we discovered a central regulatory switch. S. mutans makes sure that external DNA is available when it becomes genetically competent–by killing cells in the environment.
Vyšlo v časopise:
The Alternative Sigma Factor SigX Controls Bacteriocin Synthesis and Competence, the Two Quorum Sensing Regulated Traits in. PLoS Genet 11(7): e32767. doi:10.1371/journal.pgen.1005353
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1005353
Souhrn
Streptococcus mutans is a bacterium of the human dental plaque that contributes to caries development. It controls two important survival mechanisms via a cell-density dependent communication system (quorum sensing): The synthesis of peptide antibiotics, and of a membrane apparatus for genetic competence, i.e. the ability to take up external DNA and integrate it into its own genome. S. mutans synthesizes two different signalling peptides to this end. It has remained elusive, how exactly these signals are propagated within the cell and why only a fraction of the population becomes competent. To actually observe under the microscope which bacterium in the population is activated, and which genes are required for the activation, we constructed strains of S. mutans that reported on the transcription of a gene by starting to fluoresce green. We even constructed strains that reported on two genes simultaneously, by fluorescing either green or blue or both. With these tools, and by additionally knocking out or modifying key genes as needed, we investigated the complete signaling cascade under various conditions. Thus we discovered a central regulatory switch. S. mutans makes sure that external DNA is available when it becomes genetically competent–by killing cells in the environment.
Zdroje
1. Johnston C, Martin B, Fichant G, Polard P, Claverys JP (2014) Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol 12: 181–196. nrmicro3199 [pii]. doi: 10.1038/nrmicro3199 24509783
2. Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3: 711–721. nrmicro1234 [pii]. 16138099
3. Weigel LM, Donlan RM, Shin DH, Jensen B, Clark NC, McDougal LK, et al. (2007) High-level vancomycin-resistant Staphylococcus aureus isolates associated with a polymicrobial biofilm. Antimicrob Agents Chemother 51: 231–238. AAC.00576-06 [pii]. 17074796
4. Dalia AB, McDonough E, Camilli A (2014) Multiplex genome editing by natural transformation. Proc Natl Acad Sci U S A 111: 8937–8942. 1406478111 [pii]. doi: 10.1073/pnas.1406478111 24889608
5. Burton B, Dubnau D (2010) Membrane-associated DNA transport machines. Cold Spring Harb Perspect Biol 2: a000406. cshperspect.a000406 [pii]. doi: 10.1101/cshperspect.a000406 20573715
6. Seitz P, Blokesch M (2013) DNA-uptake machinery of naturally competent Vibrio cholerae. Proc Natl Acad Sci U S A 110: 17987–17992. 1315647110 [pii]. doi: 10.1073/pnas.1315647110 24127573
7. Mashburn-Warren L, Morrison DA, Federle MJ (2010) A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol 78: 589–606. doi: 10.1111/j.1365-2958.2010.07361.x 20969646
8. Claverys JP, Martin B, Polard P (2009) The genetic transformation machinery: composition, localization, and mechanism. FEMS Microbiol Rev 33: 643–656. FMR164 [pii]. doi: 10.1111/j.1574-6976.2009.00164.x 19228200
9. Berg KH, Biornstad TJ, Johnsborg O, Havarstein LS (2012) Properties and biological role of streptococcal fratricins. Appl Environ Microbiol 78: 3515–3522. AEM.00098-12 [pii]. doi: 10.1128/AEM.00098-12 22407687
10. Cook LC, Federle MJ (2014) Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiol Rev 38: 473–492. doi: 10.1111/1574-6976.12046 24118108
11. Fleuchot B, Gitton C, Guillot A, Vidic J, Nicolas P, Besset C, et al. (2011) Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in streptococci. Mol Microbiol 80: 1102–1119. doi: 10.1111/j.1365-2958.2011.07633.x 21435032
12. Fontaine L, Goffin P, Dubout H, Delplace B, Baulard A, Lecat-Guillet N, et al. (2013) Mechanism of competence activation by the ComRS signalling system in streptococci. Mol Microbiol 87: 1113–1132. doi: 10.1111/mmi.12157 23323845
13. Gardan R, Besset C, Gitton C, Guillot A, Fontaine L, Hols P, et al. (2013) Extracellular life cycle of ComS, the competence-stimulating peptide of Streptococcus thermophilus. J Bacteriol 195: 1845–1855. JB.02196-12 [pii]. doi: 10.1128/JB.02196-12 23396911
14. Lemme A, Gröbe L, Reck M, Tomasch J, Wagner-Döbler I (2011) Subpopulation-specific transcriptome analysis of competence-stimulating-peptide-induced Streptococcus mutans. J Bacteriol 193: 1863–1877. JB.01363-10 [pii]. doi: 10.1128/JB.01363-10 21317319
15. Son M, Ahn SJ, Guo Q, Burne RA, Hagen SJ (2012) Microfluidic study of competence regulation in Streptococcus mutans: environmental inputs modulate bimodal and unimodal expression of comX. Mol Microbiol 86: 258–272. doi: 10.1111/j.1365-2958.2012.08187.x 22845615
16. Li YH, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG (2001) Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183: 897–908. 11208787
17. Hossain MS, Biswas I (2012) An extracelluar protease, SepM, generates functional competence-stimulating peptide in Streptococcus mutans UA159. J Bacteriol 194: 5886–5896. JB.01381-12 [pii]. doi: 10.1128/JB.01381-12 22923597
18. Kreth J, Merritt J, Zhu L, Shi W, Qi F (2006) Cell density- and ComE-dependent expression of a group of mutacin and mutacin-like genes in Streptococcus mutans. FEMS Microbiol Lett 265: 11–17. FML459 [pii]. 16981904
19. Kreth J, Hung DC, Merritt J, Perry J, Zhu L, Goodman SD, et al. (2007) The response regulator ComE in Streptococcus mutans functions both as a transcription activator of mutacin production and repressor of CSP biosynthesis. Microbiology 153: 1799–1807. 153/6/1799 [pii]. 17526837
20. van der Ploeg JR (2005) Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol 187: 3980–3989. 187/12/3980 [pii]. 15937160
21. Fontaine L, Boutry C, de Frahan MH, Delplace B, Fremaux C, Horvath P, et al. (2010) A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. J Bacteriol 192: 1444–1454. JB.01251-09 [pii]. doi: 10.1128/JB.01251-09 20023010
22. Cassone M, Gagne AL, Spruce LA, Seeholzer SH, Sebert ME (2012) The HtrA protease from Streptococcus pneumoniae digests both denatured proteins and the competence-stimulating peptide. J Biol Chem 287: 38449–38459. M112.391482 [pii];doi: 10.1074/jbc.M112.391482 23012372
23. Veening JW, Smits WK, Kuipers OP (2008) Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 62: 193–210. doi: 10.1146/annurev.micro.62.081307.163002 18537474
24. Smits WK, Kuipers OP, Veening JW (2006) Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol 4: 259–271. nrmicro1381 [pii]. 16541134
25. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305: 1622–1625. 15308767
26. Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 4: 577–587. nrmicro1460 [pii]. 16845428
27. Veening JW, Smits WK, Hamoen LW, Kuipers OP (2006) Single cell analysis of gene expression patterns of competence development and initiation of sporulation in Bacillus subtilis grown on chemically defined media. J Appl Microbiol 101: 531–541. JAM2911 [pii]. 16907804
28. Acar M, Mettetal JT, van OA (2008) Stochastic switching as a survival strategy in fluctuating environments. Nat Genet 40: 471–475. ng.110 [pii]. doi: 10.1038/ng.110 18362885
29. Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467: 167–173. nature09326 [pii]. doi: 10.1038/nature09326 20829787
30. Raj A, van OA (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135: 216–226. S0092-8674(08)01243-9 [pii]. doi: 10.1016/j.cell.2008.09.050 18957198
31. Wenderska IB, Lukenda N, Cordova M, Magarvey N, Cvitkovitch DG, Senadheera DB (2012) A novel function for the competence inducing peptide, XIP, as a cell death effector of Streptococcus mutans. FEMS Microbiol Lett 336: 104–112. doi: 10.1111/j.1574-6968.2012.02660.x 22900705
32. Dufour D, Levesque CM (2013) Cell death of Streptococcus mutans induced by a quorum-sensing peptide occurs via a conserved streptococcal autolysin. J Bacteriol 195: 105–114. JB.00926-12 [pii]. doi: 10.1128/JB.00926-12 23104806
33. Perry JA, Cvitkovitch DG, Levesque CM (2009) Cell death in Streptococcus mutans biofilms: a link between CSP and extracellular DNA. FEMS Microbiol Lett 299: 261–266. FML1758 [pii]. doi: 10.1111/j.1574-6968.2009.01758.x 19735463
34. Perry JA, Jones MB, Peterson SN, Cvitkovitch DG, Levesque CM (2009) Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Mol Microbiol 72: 905–917. MMI6693 [pii]. doi: 10.1111/j.1365-2958.2009.06693.x 19400789
35. Newman RH, Fosbrink MD, Zhang J (2011) Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 111: 3614–3666. doi: 10.1021/cr100002u 21456512
36. Scholz O, Thiel A, Hillen W, Niederweis M (2000) Quantitative analysis of gene expression with an improved green fluorescent protein. p6. Eur J Biochem 267: 1565–1570. ejb1170 [pii]. 10712585
37. Biswas I, Jha JK, Fromm N (2008) Shuttle expression plasmids for genetic studies in Streptococcus mutans. Microbiology 154: 2275–2282. 154/8/2275 [pii]. doi: 10.1099/mic.0.2008/019265-0 18667560
38. Campbell EA, Choi SY, Masure HR (1998) A competence regulon in Streptococcus pneumoniae revealed by genomic analysis. Mol Microbiol 27: 929–939. 9535083
39. Dufour D, Cordova M, Cvitkovitch DG, Levesque CM (2011) Regulation of the competence pathway as a novel role associated with a streptococcal bacteriocin. J Bacteriol 193: 6552–6559. JB.05968-11 [pii]. doi: 10.1128/JB.05968-11 21984782
40. Hung DC, Downey JS, Kreth J, Qi F, Shi W, Cvitkovitch DG, et al. (2012) Oligomerization of the response regulator ComE from Streptococcus mutans is affected by phosphorylation. J Bacteriol 194: 1127–1135. JB.06565-11 [pii]. doi: 10.1128/JB.06565-11 22210762
41. Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6: 26–41. doi: 10.1007/s13238-014-0100-x 25249263
42. Plener L, Lorenz N, Reiger M, Ramalho T, Gerland U, Jung K (2015) The phosphorylation flow of the Vibrio harveyi quorum sensing cascade determines levels of phenotypic heterogeneity in the population. J Bacteriol. JB.02544-14 [pii].
43. Maamar H, Raj A, Dubnau D (2007) Noise in gene expression determines cell fate in Bacillus subtilis. Science 317: 526–529. 1140818 [pii]. 17569828
44. To TL, Maheshri N (2010) Noise can induce bimodality in positive transcriptional feedback loops without bistability. Science 327: 1142–1145. 327/5969/1142 [pii]. doi: 10.1126/science.1178962 20185727
45. Cotter PD, Ross RP, Hill C (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11: 95–105. nrmicro2937 [pii]. doi: 10.1038/nrmicro2937 23268227
46. Khan R, Rukke HV, Ricomini Filho AP, Fimland G, Arntzen MO, Thiede B, et al. (2012) Extracellular identification of a processed type II ComR/ComS pheromone of Streptococcus mutans. J Bacteriol 194: 3781–3788. JB.00624-12 [pii]. doi: 10.1128/JB.00624-12 22609914
47. Desai K, Mashburn-Warren L, Federle MJ, Morrison DA (2012) Development of competence for genetic transformation of Streptococcus mutans in a chemically defined medium. J Bacteriol 194: 3774–3780. JB.00337-12 [pii]. doi: 10.1128/JB.00337-12 22609913
48. Kochan TJ, Dawid S (2013) The HtrA protease of Streptococcus pneumoniae controls density-dependent stimulation of the bacteriocin blp locus via disruption of pheromone secretion. J Bacteriol 195: 1561–1572. JB.01964-12 [pii]. doi: 10.1128/JB.01964-12 23354751
49. Laub MT, Goulian M (2007) Specificity in two-component signal transduction pathways. Annu Rev Genet 41: 121–145. 18076326
50. Banu LD, Conrads G, Rehrauer H, Hussain H, Allan E, van der Ploeg JR (2010) The Streptococcus mutans serine/threonine kinase, PknB, regulates competence development, bacteriocin production, and cell wall metabolism. Infect Immun 78: 2209–2220. IAI.01167-09 [pii]. doi: 10.1128/IAI.01167-09 20231406
51. Merritt J, Qi F (2012) The mutacins of Streptococcus mutans: regulation and ecology. Mol Oral Microbiol 27: 57–69. doi: 10.1111/j.2041-1014.2011.00634.x 22394465
52. Kreth J, Merritt J, Shi W, Qi F (2005) Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol Microbiol 57: 392–404. MMI4695 [pii]. 15978073
53. Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simon-Soro A, Pignatelli M, Mira A (2012) The oral metagenome in health and disease. ISME J 6: 46–56. ismej201185 [pii]. doi: 10.1038/ismej.2011.85 21716308
54. Sztajer H, Szafranski SP, Tomasch J, Reck M, Nimtz M, Rohde M, et al. (2014) Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans. ISME J 8: 2256–2271. ismej201473 [pii]. doi: 10.1038/ismej.2014.73 24824668
55. Fleuchot B, Guillot A, Mezange C, Besset C, Chambellon E, Monnet V, et al. (2013) Rgg-associated SHP signaling peptides mediate cross-talk in Streptococci. PLoS One 8: e66042. doi: 10.1371/journal.pone.0066042 23776602
56. van dR I, Kessler RE (1980) Growth characteristics of group A streptococci in a new chemically defined medium. Infect Immun 27: 444–448. 6991416
57. Heckman KL, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2: 924–932. nprot.2007.132 [pii]. 17446874
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2015 Číslo 7
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Functional Constraint Profiling of a Viral Protein Reveals Discordance of Evolutionary Conservation and Functionality
- Reversible Oxidation of a Conserved Methionine in the Nuclear Export Sequence Determines Subcellular Distribution and Activity of the Fungal Nitrate Regulator NirA
- Modeling Implicates in Nephropathy: Evidence for Dominant Negative Effects and Epistasis under Anemic Stress
- Nutritional Control of DNA Replication Initiation through the Proteolysis and Regulated Translation of DnaA