#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Allelic Spectra of Risk SNPs Are Different for Environment/Lifestyle Dependent versus Independent Diseases


We reviewed several thousand genome wide association studies that were conducted to identify genetic variants influencing risk of human diseases. We tested the hypothesis that single nucleotide polymorphisms (SNPs) that influence disease risk undergo positive or negative selection more frequently than an average SNP in the human genome. We found no evidence for excess of positive selection on disease-associated SNPs. At the same time we found that alleles associated with a higher disease risk undergo negative selection. We also demonstrated that risk alleles for diseases with strong influence of environment/lifestyle factors (e.g. Type II diabetes) show little evidence of negative selection, while risk alleles for diseases with weak influence of environment/lifestyle factors (e.g. Pathological myopia) show clear signs of negative selection. The approach used in this study can be used to estimate the number of genetic variants in the human genome influencing risk of human diseases.


Vyšlo v časopise: Allelic Spectra of Risk SNPs Are Different for Environment/Lifestyle Dependent versus Independent Diseases. PLoS Genet 11(7): e32767. doi:10.1371/journal.pgen.1005371
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005371

Souhrn

We reviewed several thousand genome wide association studies that were conducted to identify genetic variants influencing risk of human diseases. We tested the hypothesis that single nucleotide polymorphisms (SNPs) that influence disease risk undergo positive or negative selection more frequently than an average SNP in the human genome. We found no evidence for excess of positive selection on disease-associated SNPs. At the same time we found that alleles associated with a higher disease risk undergo negative selection. We also demonstrated that risk alleles for diseases with strong influence of environment/lifestyle factors (e.g. Type II diabetes) show little evidence of negative selection, while risk alleles for diseases with weak influence of environment/lifestyle factors (e.g. Pathological myopia) show clear signs of negative selection. The approach used in this study can be used to estimate the number of genetic variants in the human genome influencing risk of human diseases.


Zdroje

1. Barnes E (2007) Diseases and Human Evolution: University of New Mexico Press.

2. Shastry BS (2002) SNP alleles in human disease and evolution. J Hum Genet 47: 561–566. 12436191

3. Wu H, Ma BG, Zhao JT, Zhang HY (2007) How similar are amino acid mutations in human genetic diseases and evolution. Biochem Biophys Res Commun 362: 233–237. 17681277

4. Genuis SJ (2012) What's out there making us sick? J Environ Public Health 2012: 605137. doi: 10.1155/2012/605137 22262979

5. Oschman JL (2011) Chronic disease: are we missing something? J Altern Complement Med 17: 283–285. doi: 10.1089/acm.2011.0101 21438673

6. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133: 693–709. 8454210

7. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595. 2513255

8. Kim Y, Nielsen R (2004) Linkage disequilibrium as a signature of selective sweeps. Genetics 167: 1513–1524. 15280259

9. Akey JM, Zhang G, Zhang K, Jin L, Shriver MD (2002) Interrogating a high-density SNP map for signatures of natural selection. Genome Res 12: 1805–1814. 12466284

10. Depaulis F, Veuille M (1998) Neutrality tests based on the distribution of haplotypes under an infinite-site model. Mol Biol Evol 15: 1788–1790. 9917213

11. Suzuki Y, Gojobori T (1999) A method for detecting positive selection at single amino acid sites. Mol Biol Evol 16: 1315–1328. 10563013

12. Biswas S, Akey JM (2006) Genomic insights into positive selection. Trends Genet 22: 437–446. 16808986

13. Kelley JL, Swanson WJ (2008) Positive selection in the human genome: from genome scans to biological significance. Annu Rev Genomics Hum Genet 9: 143–160. doi: 10.1146/annurev.genom.9.081307.164411 18505377

14. Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39: 197–218. 16285858

15. Vitti JJ, Grossman SR, Sabeti PC (2013) Detecting natural selection in genomic data. Annu Rev Genet 47: 97–120. doi: 10.1146/annurev-genet-111212-133526 24274750

16. Pritchard JK, Pickrell JK, Coop G (2010) The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol 20: R208–215. doi: 10.1016/j.cub.2009.11.055 20178769

17. Hernandez RD, Kelley JL, Elyashiv E, Melton SC, Auton A, et al. (2011) Classic selective sweeps were rare in recent human evolution. Science 331: 920–924. doi: 10.1126/science.1198878 21330547

18. Messer PW, Petrov DA (2013) Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol Evol 28: 659–669. doi: 10.1016/j.tree.2013.08.003 24075201

19. Uecker H, Hermisson J (2011) On the fixation process of a beneficial mutation in a variable environment. Genetics 188: 915–930. doi: 10.1534/genetics.110.124297 21652524

20. Bamshad M, Wooding SP (2003) Signatures of natural selection in the human genome. Nat Rev Genet 4: 99–111. 12560807

21. Raj T, Kuchroo M, Replogle JM, Raychaudhuri S, Stranger BE, et al. (2013) Common risk alleles for inflammatory diseases are targets of recent positive selection. Am J Hum Genet 92: 517–529. doi: 10.1016/j.ajhg.2013.03.001 23522783

22. Pickrell JK, Coop G, Novembre J, Kudaravalli S, Li JZ, et al. (2009) Signals of recent positive selection in a worldwide sample of human populations. Genome Res 19: 826–837. doi: 10.1101/gr.087577.108 19307593

23. Lohmueller KE, Mauney MM, Reich D, Braverman JM (2006) Variants associated with common disease are not unusually differentiated in frequency across populations. Am J Hum Genet 78: 130–136. 16385456

24. Myles S, Davison D, Barrett J, Stoneking M, Timpson N (2008) Worldwide population differentiation at disease-associated SNPs. BMC Med Genomics 1: 22. doi: 10.1186/1755-8794-1-22 18533027

25. Wang WY, Pike N (2004) The allelic spectra of common diseases may resemble the allelic spectrum of the full genome. Med Hypotheses 63: 748–751. 15325027

26. Gorlov IP, Gorlova OY, Frazier ML, Spitz MR, Amos CI (2011) Evolutionary evidence of the effect of rare variants on disease etiology. Clin Genet 79: 199–206. doi: 10.1111/j.1399-0004.2010.01535.x 20831747

27. Gorlov IP, Gorlova OY, Sunyaev SR, Spitz MR, Amos CI (2008) Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am J Hum Genet 82: 100–112. doi: 10.1016/j.ajhg.2007.09.006 18179889

28. Hughes AL, Packer B, Welch R, Bergen AW, Chanock SJ, et al. (2003) Widespread purifying selection at polymorphic sites in human protein-coding loci. Proc Natl Acad Sci U S A 100: 15754–15757. 14660790

29. Nakagome S, Mano S, Kozlowski L, Bujnicki JM, Shibata H, et al. (2012) Crohn's disease risk alleles on the NOD2 locus have been maintained by natural selection on standing variation. Mol Biol Evol 29: 1569–1585. doi: 10.1093/molbev/mss006 22319155

30. Reich DE, Lander ES (2001) On the allelic spectrum of human disease. Trends Genet 17: 502–510. 11525833

31. Fumagalli M, Sironi M (2014) Human genome variability, natural selection and infectious diseases. Curr Opin Immunol 30C: 9–16.

32. Dudley JT, Chen R, Sanderford M, Butte AJ, Kumar S (2012) Evolutionary meta-analysis of association studies reveals ancient constraints affecting disease marker discovery. Mol Biol Evol 29: 2087–2094. doi: 10.1093/molbev/mss079 22389448

33. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106: 9362–9367. doi: 10.1073/pnas.0903103106 19474294

34. Luo XJ, Mattheisen M, Li M, Huang L, Rietschel M, et al. (2015) Systematic Integration of Brain eQTL and GWAS Identifies ZNF323 as a Novel Schizophrenia Risk Gene and Suggests Recent Positive Selection Based on Compensatory Advantage on Pulmonary Function. Schizophr Bull.

35. Ramos PS, Shaftman SR, Ward RC, Langefeld CD (2014) Genes associated with SLE are targets of recent positive selection. Autoimmune Dis 2014: 203435. doi: 10.1155/2014/203435 24587899

36. Luo Y, Riedlinger G, Szolovits P (2014) Text mining in cancer gene and pathway prioritization. Cancer Inform 13: 69–79.

37. Pletscher-Frankild S, Palleja A, Tsafou K, Binder JX, Jensen LJ (2014) DISEASES: Text mining and data integration of disease-gene associations. Methods.

38. Orr N, Chanock S (2008) Common genetic variation and human disease. Adv Genet 62: 1–32. doi: 10.1016/S0065-2660(08)00601-9 19010252

39. Peters DT, Musunuru K (2012) Functional evaluation of genetic variation in complex human traits. Hum Mol Genet 21: R18–23. 22936690

40. Kimura M (1983) The neutral theory of molecular evolution. Cambridge [Cambridgeshire]; New York: Cambridge University Press. xv, 367 p. p.

41. Maynard Smith J (1993) The theory of evolution. Cambridge [England]; New York: Cambridge University Press. xxii, 354 p. p.

42. Burger J, Kirchner M, Bramanti B, Haak W, Thomas MG (2007) Absence of the lactase-persistence-associated allele in early Neolithic Europeans. Proc Natl Acad Sci U S A 104: 3736–3741. 17360422

43. Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, et al. (2007) Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet 39: 31–40. 17159977

44. Lam DW, LeRoith D (2012) The worldwide diabetes epidemic. Curr Opin Endocrinol Diabetes Obes 19: 93–96. 22262000

45. Lopez-Jaramillo P, Casas JP, Bautista L, Serrano NC, Morillo CA (2001) An integrated proposal to explain the epidemic of cardiovascular disease in a developing country. From socioeconomic factors to free radicals. Cardiology 96: 1–6.

46. Proctor RN (2001) Tobacco and the global lung cancer epidemic. Nat Rev Cancer 1: 82–86. 11900255

47. Velasquez-Manoff M An Epidemic of Absence: A New Way of Understanding Allergies and Autoimmune Diseases. New York: A Division of Simon &Schuster, Inc.

48. Velasquez-Manoff M (2012) An Epidemic of Absence: A New Way of Understanding Allergies and Autoimmune Disease. New York: A Division of Simon & Schuster, Inc.

49. Carlsten C, Georas SN (2014) Update in environmental and occupational lung diseases 2013. Am J Respir Crit Care Med 189: 1037–1043. doi: 10.1164/rccm.201401-0108UP 24787066

50. Lubrano C, Genovesi G, Specchia P, Costantini D, Mariani S, et al. (2013) Obesity and metabolic comorbidities: environmental diseases? Oxid Med Cell Longev 2013: 640673. doi: 10.1155/2013/640673 23577225

51. Norman RE, Carpenter DO, Scott J, Brune MN, Sly PD (2013) Environmental exposures: an underrecognized contribution to noncommunicable diseases. Rev Environ Health 28: 59–65. doi: 10.1515/reveh-2012-0033 23612529

52. Tang K, Thornton KR, Stoneking M (2007) A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biol 5: e171. 17579516

53. Li MJ, Wang LY, Xia Z, Wong MP, Sham PC, et al. (2014) dbPSHP: a database of recent positive selection across human populations. Nucleic Acids Res 42: D910–916. doi: 10.1093/nar/gkt1052 24194603

54. Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB (2010) Rare variants create synthetic genome-wide associations. PLoS Biol 8: e1000294. doi: 10.1371/journal.pbio.1000294 20126254

55. Gorlova OY, Ying J, Amos CI, Spitz MR, Peng B, et al. (2012) Derived SNP alleles are used more frequently than ancestral alleles as risk-associated variants in common human diseases. J Bioinform Comput Biol 10: 1241008. doi: 10.1142/S0219720012410089 22809343

56. Olalde I, Allentoft ME, Sanchez-Quinto F, Santpere G, Chiang CW, et al. (2014) Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507: 225–228. doi: 10.1038/nature12960 24463515

57. Hacia JG, Fan JB, Ryder O, Jin L, Edgemon K, et al. (1999) Determination of ancestral alleles for human single-nucleotide polymorphisms using high-density oligonucleotide arrays. Nat Genet 22: 164–167. 10369258

58. Czene K, Lichtenstein P, Hemminki K (2002) Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish Family-Cancer Database. Int J Cancer 99: 260–266. 11979442

59. Hyttinen V, Kaprio J, Kinnunen L, Koskenvuo M, Tuomilehto J (2003) Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes 52: 1052–1055. 12663480

60. Freitag CM (2007) The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol Psychiatry 12: 2–22. 17033636

61. Gifford F (1989) Complex genetic causation of human disease: critiques of and rationales for heritability and path analysis. Theor Med 10: 107–122. 2675372

62. Tenesa A, Haley CS (2013) The heritability of human disease: estimation, uses and abuses. Nat Rev Genet 14: 139–149. doi: 10.1038/nrg3377 23329114

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#