#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Ultra-Sensitive Detection of by Amplification of Multi-Copy Subtelomeric Targets


Ingrid Felger and colleagues developed an assay that targets multi-copy genomic sequences and can detect low-density infections with falciparum malaria parasites.


Vyšlo v časopise: Ultra-Sensitive Detection of by Amplification of Multi-Copy Subtelomeric Targets. PLoS Med 12(3): e32767. doi:10.1371/journal.pmed.1001788
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pmed.1001788

Souhrn

Ingrid Felger and colleagues developed an assay that targets multi-copy genomic sequences and can detect low-density infections with falciparum malaria parasites.


Zdroje

1. The malERA Consultative Group on Diagnoses and Diagnostics (2011) A research agenda for malaria eradication: diagnoses and diagnostics. PLoS Med 8: e1000396. doi: 10.1371/journal.pmed.1000396 21311583

2. Tietje K, Hawkins K, Clerk C, Ebels K, McGray S, et al. (2014) The essential role of infection-detection technologies for malaria elimination and eradication. Trends Parasitol 30: 259–266. doi: 10.1016/j.pt.2014.03.003 24726857

3. Sturrock HJW, Hsiang MS, Cohen JM, Smith DL, Greenhouse B, et al. (2013) Targeting asymptomatic malaria infections: active surveillance in control and elimination. PLoS Med 10: e1001467. doi: 10.1371/journal.pmed.1001467 23853551

4. Okell LC, Ghani AC, Lyons E, Drakeley CJ (2009) Submicroscopic infection in Plasmodium falciparum-endemic populations: a systematic review and meta-analysis. J Infect Dis 200: 1509–1517. doi: 10.1086/644781 19848588

5. Okell LC, Bousema T, Griffin JT, Ouédraogo AL, Ghani AC, et al. (2012) Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun 3: 1237. doi: 10.1038/ncomms2241 23212366

6. Poirot E, Skarbinski J, Sinclair D, Kachur SP, Slutsker L, et al. (2013) Mass drug administration for malaria. Cochrane Database Syst Rev 12: CD008846. doi: 10.1002/14651858.CD008846.pub2 24318836

7. Okell LC, Griffin JT, Kleinschmidt I, Hollingsworth TD, Churcher TS, et al. (2011) The potential contribution of mass treatment to the control of Plasmodium falciparum malaria. PLoS ONE 6: e20179. doi: 10.1371/journal.pone.0020179 21629651

8. Tiono AB, Ouédraogo A, Ogutu B, Diarra A, Coulibaly S, et al. (2013) A controlled, parallel, cluster-randomized trial of community-wide screening and treatment of asymptomatic carriers of Plasmodium falciparum in Burkina Faso. Malar J 12: 79. doi: 10.1186/1475-2875-12-79 23442748

9. World Health Organization (2013) World malaria report 2013. Geneva: World Health Organization. http://www.who.int/malaria/publications/world_malaria_report_2013/en/. Accessed 15 January 2015. doi: 10.1007/s12070-013-0687-x 25621273

10. Kamau E, Tolbert LS, Kortepeter L, Pratt M, Nyakoe N, et al. (2011) Development of a highly sensitive genus-specific quantitative reverse transcriptase real-time PCR assay for detection and quantitation of plasmodium by amplifying RNA and DNA of the 18S rRNA genes. J Clin Microbiol 49: 2946–2953. doi: 10.1128/JCM.00276-11 21653767

11. Wampfler R, Mwingira F, Javati S, Robinson L, Betuela I, et al. (2013) Strategies for detection of Plasmodium species gametocytes. PLoS ONE 8: e76316. doi: 10.1371/journal.pone.0076316 24312682

12. Murphy SC, Prentice JL, Williamson K, Wallis CK, Fang FC, et al. (2012) Real-time quantitative reverse transcription PCR for monitoring of blood-stage Plasmodium falciparum infections in malaria human challenge trials. Am J Trop Med Hyg 86: 383–394. doi: 10.4269/ajtmh.2012.10-0658 22403305

13. Schoone GJ, Oskam L, Kroon NC, Schallig HD, Omar SA (2000) Detection and quantification of Plasmodium falciparum in blood samples using quantitative nucleic acid sequence-based amplification. J Clin Microbiol 38: 4072–4075. 11060070

14. Schneider P, Wolters L, Schoone G, Schallig H, Sillekens P, et al. (2005) Real-time nucleic acid sequence-based amplification is more convenient than real-time PCR for quantification of Plasmodium falciparum. J Clin Microbiol 43: 402–405. doi: 10.1128/JCM.43.1.402-405.2005 15635001

15. Mens PF, Schoone GJ, Kager PA, Schallig HD (2006) Detection and identification of human Plasmodium species with real-time quantitative nucleic acid sequence-based amplification. Malar J 5: 80. doi: 10.1186/1475-2875-5-80 17018138

16. Cheng Z, Sun X, Yang Y, Wang H, Zheng Z (2013) A novel, sensitive assay for high-throughput molecular detection of plasmodia for active screening of malaria for elimination. J Clin Microbiol 51: 125–130. doi: 10.1128/JCM.02010-12 23100347

17. Singh B, Bobogare A, Cox-Singh J, Snounou G, Abdullah MS, et al. (1999) A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am J Trop Med Hyg 60: 687–692. 10348249

18. Chew CH, Lim YAL, Lee PC, Mahmud R, Chua KH (2012) Hexaplex PCR detection system for identification of five human Plasmodium species with an internal control. J Clin Microbiol 50: 4012–4019. doi: 10.1128/JCM.06454-11 23035191

19. Steenkeste N, Incardona S, Chy S, Duval L, Ekala M-T, et al. (2009) Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers. Malar J 8: 86. doi: 10.1186/1475-2875-8-86 19402894

20. Pakalapati D, Garg S, Middha S, Acharya J, Subudhi AK, et al. (2013) Development and evaluation of a 28S rRNA gene-based nested PCR assay for P. falciparum and P. vivax. Pathog Glob Heal 107: 180–188. doi: 10.1179/2047773213Y.0000000090 23816509

21. Tanomsing N, Imwong M, Theppabutr S, Pukrittayakamee S, Day NPJ, et al. (2010) Accurate and sensitive detection of Plasmodium species in humans by use of the dihydrofolate reductase-thymidylate synthase linker region. J Clin Microbiol 48: 3735–3737. doi: 10.1128/JCM.00898-10 20702666

22. Fuehrer H-P, Fally MA, Habler VE, Starzengruber P, Swoboda P, et al. (2011) Novel nested direct PCR technique for malaria diagnosis using filter paper samples. J Clin Microbiol 49: 1628–1630. doi: 10.1128/JCM.01792-10 21270224

23. Rosanas-Urgell A, Mueller D, Betuela I, Barnadas C, Iga J, et al. (2010) Comparison of diagnostic methods for the detection and quantification of the four sympatric Plasmodium species in field samples from Papua New Guinea. Malar J 9: 361. doi: 10.1186/1475-2875-9-361 21156052

24. Rougemont M, Van Saanen M, Sahli R, Hinrikson HP, Bille J, et al. (2004) Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real-time PCR assays. J Clin Microbiol 42: 5636–5643. doi: 10.1128/JCM.42.12.5636-5643.2004 15583293

25. Kamau E, Alemayehu S, Feghali KC, Saunders D, Ockenhouse CF (2013) Multiplex qPCR for detection and absolute quantification of malaria. PLoS ONE 8: e71539. doi: 10.1371/journal.pone.0071539 24009663

26. Veron V, Simon S, Carme B (2009) Multiplex real-time PCR detection of P. falciparum, P. vivax and P. malariae in human blood samples. Exp Parasitol 121: 346–351. doi: 10.1016/j.exppara.2008.12.012 19124021

27. Farrugia C, Cabaret O, Botterel F, Bories C, Foulet F, et al. (2011) Cytochrome b gene quantitative PCR for diagnosing Plasmodium falciparum infection in travelers. J Clin Microbiol 49: 2191–2195. doi: 10.1128/JCM.02156-10 21508150

28. Hwang S-Y, Kim S-H, Lee G-Y, Hang VTT, Moon C-S, et al. (2011) A novel real-time PCR assay for the detection of Plasmodium falciparum and Plasmodium vivax malaria in low parasitized individuals. Acta Trop 120: 40–45. doi: 10.1016/j.actatropica.2011.05.006 21664340

29. Rockett RJ, Tozer SJ, Peatey C, Bialasiewicz S, Whiley DM, et al. (2011) A real-time, quantitative PCR method using hydrolysis probes for the monitoring of Plasmodium falciparum load in experimentally infected human volunteers. Malar J 10: 48. doi: 10.1186/1475-2875-10-48 21352599

30. Perandin F, Manca N, Calderaro A, Piccolo G, Galati L, et al. (2004) Development of a real-time PCR assay for detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for routine clinical diagnosis. J Clin Microbiol 42: 1214–1219. 15004078

31. Cnops L, Jacobs J, Van Esbroeck M (2011) Validation of a four-primer real-time PCR as a diagnostic tool for single and mixed Plasmodium infections. Clin Microbiol Infect 17: 1101–1107. doi: 10.1111/j.1469-0691.2010.03344.x 20718798

32. Polley SD, Mori Y, Watson J, Perkins MD, González IJ, et al. (2010) Mitochondrial DNA targets increase sensitivity of malaria detection using loop-mediated isothermal amplification. J Clin Microbiol 48: 2866–2871. doi: 10.1128/JCM.00355-10 20554824

33. Lucchi NW, Demas A, Narayanan J, Sumari D, Kabanywanyi A, et al. (2010) Real-time fluorescence loop mediated isothermal amplification for the diagnosis of malaria. PLoS ONE 5: e13733. doi: 10.1371/journal.pone.0013733 21060829

34. Hopkins H, González IJ, Polley SD, Angutoko P, Ategeka J, et al. (2013) Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. J Infect Dis 208: 645–652. doi: 10.1093/infdis/jit184 23633405

35. Mohon AN, Elahi R, Khan WA, Haque R, Sullivan DJ Jr, et al. (2014) A new visually improved and sensitive loop mediated isothermal amplification (LAMP) for diagnosis of symptomatic falciparum malaria. Acta Trop 134C: 52–57. doi: 10.1016/j.actatropica.2014.02.016

36. Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M (2014) Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malar J 13: 99. doi: 10.1186/1475-2875-13-99 24629133

37. Safeukui I, Millet P, Boucher S, Melinard L, Fregeville F, et al. (2008) Evaluation of FRET real-time PCR assay for rapid detection and differentiation of Plasmodium species in returning travellers and migrants. Malar J 7: 70. doi: 10.1186/1475-2875-7-70 18442362

38. Mens PF, Moers APHA, de Bes LM, Flint J, Sak JRS, et al. (2012) Development, validation and evaluation of a rapid PCR-nucleic acid lateral flow immuno-assay for the detection of Plasmodium and the differentiation between Plasmodium falciparum and Plasmodium vivax. Malar J 11: 279. doi: 10.1186/1475-2875-11-279 22900750

39. Mens PF, de Bes HM, Sondo P, Laochan N, Keereecharoen L, et al. (2012) Direct blood PCR in combination with nucleic acid lateral flow immunoassay for detection of Plasmodium species in settings where malaria is endemic. J Clin Microbiol 50: 3520–3525. doi: 10.1128/JCM.01426-12 22915610

40. Lucchi NW, Narayanan J, Karell MA, Xayavong M, Kariuki S, et al. (2013) Molecular diagnosis of malaria by photo-induced electron transfer fluorogenic primers: PET-PCR. PLoS ONE 8: e56677. doi: 10.1371/journal.pone.0056677 23437209

41. Talundzic E, Maganga M, Masanja IM, Peterson DS, Udhayakumar V, et al. (2014) Field evaluation of the photo-induced electron transfer fluorogenic primers (PET) real-time PCR for the detection of Plasmodium falciparum in Tanzania. Malar J 13: 31. doi: 10.1186/1475-2875-13-31 24467985

42. Haanshuus CG, Mohn SC, Mørch K, Langeland N, Blomberg B, et al. (2013) A novel, single-amplification PCR targeting mitochondrial genome highly sensitive and specific in diagnosing malaria among returned travellers in Bergen, Norway. Malar J 12: 26. doi: 10.1186/1475-2875-12-26 23336125

43. Mercereau-Puijalon O, Barale J-C, Bischoff E (2002) Three multigene families in Plasmodium parasites: facts and questions. Int J Parasitol 32: 1323–1344. doi: 10.1016/S0020-7519(02)00111-X 12350369

44. Imwong M, Hanchana S, Malleret B, Rénia L, Day NPJ, et al. (2014) High throughput ultra-sensitive molecular techniques to quantify low density malaria parasitaemias. J Clin Microbiol 52: 3303–3309. doi: 10.1128/JCM.01057-14 24989601

45. Demas A, Oberstaller J, DeBarry J, Lucchi NW, Srinivasamoorthy G, et al. (2011) Applied genomics: data mining reveals species-specific malaria diagnostic targets more sensitive than 18S rRNA. J Clin Microbiol 49: 2411–2418. doi: 10.1128/JCM.02603-10 21525225

46. Cheng Q, Lawrence G, Reed C, Stowers A, Ranford-Cartwright L, et al. (1997) Measurement of Plasmodium falciparum growth rates in vivo: a test of malaria vaccines. Am J Trop Med Hyg 57: 495–500. 9347970

47. Oyedeji SI, Awobode HO, Monday GC, Kendjo E, Kremsner PG, et al. (2007) Comparison of PCR-based detection of Plasmodium falciparum infections based on single and multicopy genes. Malar J 6: 112. doi: 10.1186/1475-2875-6-112 17705826

48. Figueiredo LM, Pirrit LA, Scherf A, Pirritt LA (2000) Genomic organisation and chromatin structure of Plasmodium falciparum chromosome ends. Mol Biochem Parasitol 106: 169–174. 10743621

49. Gardner MJ, Hall N, Fung E, White O, Berriman M, et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498–511. doi: 10.1038/nature01097 12368864

50. Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, et al. (1995) The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82: 89–100. 7606788

51. Thompson JK, Rubio JP, Caruana S, Brockman A, Wickham ME, et al. (1997) The chromosomal organization of the Plasmodium falciparum var gene family is conserved. Mol Biochem Parasitol 87: 49–60. 9233672

52. Padley DJ, Heath AB, Sutherland C, Chiodini PL, Baylis SA, et al. (2008) Establishment of the 1st World Health Organization international standard for Plasmodium falciparum DNA for nucleic acid amplification technique (NAT)-based assays. Malar J 7: 139. doi: 10.1186/1475-2875-7-139 18652656

53. Jeffery GM, Eyles DE (1954) The duration in the human host of infections with a Panama strain of Plasmodium falciparum. Am J Trop Med Hyg 3: 219–224. 13138823

54. Sama W, Dietz K, Smith T (2006) Distribution of survival times of deliberate Plasmodium falciparum infections in tertiary syphilis patients. Trans R Soc Trop Med Hyg 100: 811–816. doi: 10.1016/j.trstmh.2005.11.001 16451806

55. Felger I, Maire M, Bretscher MT, Falk N, Tiaden A, et al. (2012) The dynamics of natural Plasmodium falciparum infections. PLoS ONE 7: e45542. doi: 10.1371/journal.pone.0045542 23029082

56. Diebner HH, Eichner M, Molineaux L, Collins WE, Jeffery GM, et al. (2000) Modelling the transition of asexual blood stages of Plasmodium falciparum to gametocytes. J Theor Biol 202: 113–127. doi: 10.1006/jtbi.1999.1041 10640432

57. Eichner M, Diebner HH, Molineaux L, Collins WE, Jeffery GM, et al. (2001) Genesis, sequestration and survival of Plasmodium falciparum gametocytes: parameter estimates from fitting a model to malaria therapy data. Trans R Soc Trop Med Hyg 95: 497–501. 11706658

58. Ouédraogo AL, Bousema T, Schneider P, de Vlas SJ, Ilboudo-Sanogo E, et al. (2009) Substantial contribution of submicroscopical Plasmodium falciparum gametocyte carriage to the infectious reservoir in an area of seasonal transmission. PLoS ONE 4: e8410. doi: 10.1371/journal.pone.0008410 20027314

59. Bousema T, Dinglasan RR, Morlais I, Gouagna LC, van Warmerdam T, et al. (2012) Mosquito feeding assays to determine the infectiousness of naturally infected Plasmodium falciparum gametocyte carriers. PLoS ONE 7: e42821. doi: 10.1371/journal.pone.0042821 22936993

60. Young MD, Hardman NF (1948) The infectivity of native malarias in South Carolina to Anopheles quadrimaculatus. Am J Trop Med Hyg 28: 303–311. 18858032

61. Jeffery GM, Eyles DE (1955) Infectivity to mosquitoes of Plasmodium falciparum as related to gametocyte density and duration of infection. Am J Trop Med Hyg 4: 781–789. 13259002

62. Coleman RE, Kumpitak C, Ponlawat A, Maneechai N, Phunkitchar V, et al. (2004) Infectivity of asymptomatic Plasmodium-infected human populations to Anopheles dirus mosquitoes in western Thailand. J Med Entomol 41: 201–208. 15061279

63. Nwakanma D, Kheir A, Sowa M, Dunyo S, Jawara M, et al. (2008) High gametocyte complexity and mosquito infectivity of Plasmodium falciparum in the Gambia. Int J Parasitol 38: 219–227. doi: 10.1016/j.ijpara.2007.07.003 17709108

64. Pichon G, Awono-Ambene HP, Robert V (2000) High heterogeneity in the number of Plasmodium falciparum gametocytes in the bloodmeal of mosquitoes fed on the same host. Parasitology 121 (Pt 2): 115–120.

65. Gaillard FO, Boudin C, Chau NP, Robert V, Pichon G (2003) Togetherness among Plasmodium falciparum gametocytes: interpretation through simulation and consequences for malaria transmission. Parasitology 127: 427–435. 14653532

66. Nacher M (2004) Does the shape of Plasmodium falciparum gametocytes have a function? Med Hypotheses 62: 618–619. doi: 10.1016/j.mehy.2003.11.011 15050117

67. Paul REL, Bonnet S, Boudin C, Tchuinkam T, Robert V (2007) Aggregation in malaria parasites places limits on mosquito infection rates. Infect Genet Evol 7: 577–586. doi: 10.1016/j.meegid.2007.04.004 17521970

68. Schneider P, Bousema JT, Gouagna LC, Otieno S, van de Vegte-Bolmer M, et al. (2007) Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection. Am J Trop Med Hyg 76: 470–474. 17360869

69. Mosha JF, Sturrock HJW, Greenhouse B, Greenwood B, Sutherland CJ, et al. (2013) Epidemiology of subpatent Plasmodium falciparum infection: implications for detection of hotspots with imperfect diagnostics. Malar J 12: 221. doi: 10.1186/1475-2875-12-221 23815811

70. Bharti AR, Letendre SL, Patra KP, Vinetz JM, Smith DM (2009) Malaria diagnosis by a polymerase chain reaction-based assay using a pooling strategy. Am J Trop Med Hyg 81: 754–757. doi: 10.4269/ajtmh.2009.09-0274 19861605

71. Hsiang MS, Lin M, Dokomajilar C, Kemere J, Pilcher CD, et al. (2010) PCR-based pooling of dried blood spots for detection of malaria parasites: optimization and application to a cohort of Ugandan children. J Clin Microbiol 48: 3539–3543. doi: 10.1128/JCM.00522-10 20686079

72. Hsiang MS, Hwang J, Kunene S, Drakeley C, Kandula D, et al. (2012) Surveillance for malaria elimination in Swaziland: a national cross-sectional study using pooled PCR and serology. PLoS ONE 7: e29550. doi: 10.1371/journal.pone.0029550 22238621

73. Taylor SM, Juliano JJ, Trottman PA, Griffin JB, Landis SH, et al. (2010) High-throughput pooling and real-time PCR-based strategy for malaria detection. J Clin Microbiol 48: 512–519. doi: 10.1128/JCM.01800-09 19940051

74. Congpuong K, Saejeng A, Sug-Aram R, Aruncharus S, Darakapong A, et al. (2012) Mass blood survey for malaria: pooling and real-time PCR combined with expert microscopy in north-west Thailand. Malar J 11: 288. doi: 10.1186/1475-2875-11-288 22909399

Štítky
Interné lekárstvo

Článok vyšiel v časopise

PLOS Medicine


2015 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#