malERA: An updated research agenda for basic science and enabling technologies in malaria elimination and eradication
Dyann F.
Wirth and colleagues propose a research agenda for basic science and enabling technologies in malaria elimination and eradication.
Vyšlo v časopise:
malERA: An updated research agenda for basic science and enabling technologies in malaria elimination and eradication. PLoS Med 14(11): e32767. doi:10.1371/journal.pmed.1002451
Kategorie:
Collection Review
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1002451
Souhrn
Dyann F.
Wirth and colleagues propose a research agenda for basic science and enabling technologies in malaria elimination and eradication.
Zdroje
1. The malERA Consultative Group on Basic Science and Enabling Technologies. A Research Agenda for Malaria Eradication: Basic Science and Enabling Technologies. PLOS Medicine. 2011;8(1):e1000399. doi: 10.1371/journal.pmed.1000399 21311584
2. Eksi S, Morahan BJ, Haile Y, Furuya T, Jiang H, Ali O, et al. Plasmodium falciparum gametocyte development 1 (Pfgdv1) and gametocytogenesis early gene identification and commitment to sexual development. PLoS pathogens. 2012;8(10):e1002964. Epub 2012/10/25. doi: 10.1371/journal.ppat.1002964 PPATHOGENS-D-12-01039 [pii]. 23093935; PubMed Central PMCID: PMC3475683.
3. Ikadai H, Shaw Saliba K, Kanzok SM, McLean KJ, Tanaka TQ, Cao J, et al. Transposon mutagenesis identifies genes essential for Plasmodium falciparum gametocytogenesis. Proc Natl Acad Sci U S A. 2013;110(18):E1676–84. Epub 2013/04/11. doi: 10.1073/pnas.1217712110 1217712110 [pii]. 23572579; PubMed Central PMCID: PMC3645567.
4. Brancucci NM, Bertschi NL, Zhu L, Niederwieser I, Chin WH, Wampfler R, et al. Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell host & microbe. 2014;16(2):165–76. Epub 2014/08/15. doi: 10.1016/j.chom.2014.07.004 S1931-3128(14)00258-3 [pii]. 25121746.
5. Kafsack BF, Rovira-Graells N, Clark TG, Bancells C, Crowley VM, Campino SG, et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature. 2014;507(7491):248–52. Epub 2014/02/28. doi: 10.1038/nature12920 nature12920 [pii]. 24572369; PubMed Central PMCID: PMC4040541.
6. Sinha A, Hughes KR, Modrzynska KK, Otto TD, Pfander C, Dickens NJ, et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature. 2014;507(7491):253–7. Epub 2014/02/28. doi: 10.1038/nature12970 nature12970 [pii]. 24572359; PubMed Central PMCID: PMC4105895.
7. Duffy S, Avery VM. Identification of inhibitors of Plasmodium falciparum gametocyte development. Malaria journal. 2013;12:408. Epub 2013/11/12. doi: 10.1186/1475-2875-12-408 [pii]. 24206914; PubMed Central PMCID: PMC3842684.
8. Brancucci NM, Goldowitz I, Buchholz K, Werling K, Marti M. An assay to probe Plasmodium falciparum growth, transmission stage formation and early gametocyte development. Nature protocols. 2015;10(8):1131–42. doi: 10.1038/nprot.2015.072 26134953; PubMed Central PMCID: PMC4581880.
9. Duffy S, Loganathan S, Holleran JP, Avery VM. Large-scale production of Plasmodium falciparum gametocytes for malaria drug discovery. Nature protocols. 2016;11(5):976–92. doi: 10.1038/nprot.2016.056 27123949.
10. Lucantoni L, Fidock DA, Avery VM. Luciferase-Based, High-Throughput Assay for Screening and Profiling Transmission-Blocking Compounds against Plasmodium falciparum Gametocytes. Antimicrobial agents and chemotherapy. 2016;60(4):2097–107. doi: 10.1128/AAC.01949-15 26787698; PubMed Central PMCID: PMC4808229.
11. Plouffe DM, Wree M, Du AY, Meister S, Li F, Patra K, et al. High-Throughput Assay and Discovery of Small Molecules that Interrupt Malaria Transmission. Cell host & microbe. 2016;19(1):114–26. doi: 10.1016/j.chom.2015.12.001 26749441; PubMed Central PMCID: PMC4723716.
12. Carey AF, Wang G, Su CY, Zwiebel LJ, Carlson JR. Odorant reception in the malaria mosquito Anopheles gambiae. Nature. 2010;464(7285):66–71. Epub 2010/02/05. nature08834 [pii] doi: 10.1038/nature08834 20130575; PubMed Central PMCID: PMC2833235.
13. Wang G, Carey AF, Carlson JR, Zwiebel LJ. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci U S A. 2010;107(9):4418–23. Epub 2010/02/18. doi: 10.1073/pnas.0913392107 0913392107 [pii]. 20160092; PubMed Central PMCID: PMC2840125.
14. Rinker DC, Pitts RJ, Zhou X, Suh E, Rokas A, Zwiebel LJ. Blood meal-induced changes to antennal transcriptome profiles reveal shifts in odor sensitivities in Anopheles gambiae. Proc Natl Acad Sci U S A. 2013;110(20):8260–5. doi: 10.1073/pnas.1302562110 23630291; PubMed Central PMCID: PMCPMC3657813.
15. Pellegrino M, Nakagawa T, Vosshall LB. Single sensillum recordings in the insects Drosophila melanogaster and Anopheles gambiae. J Vis Exp. 2010;(36):1–5. Epub 2010/02/19. doi: 10.3791/1725 1725 [pii]. 20164822; PubMed Central PMCID: PMC2830253.
16. Tauxe GM, MacWilliam D, Boyle SM, Guda T, Ray A. Targeting a dual detector of skin and CO2 to modify mosquito host seeking. Cell. 2013;155(6):1365–79. Epub 2013/12/10. doi: 10.1016/j.cell.2013.11.013 S0092-8674(13)01426-8 [pii]. 24315103; PubMed Central PMCID: PMC3899525.
17. Molina-Cruz A, DeJong RJ, Ortega C, Haile A, Abban E, Rodrigues J, et al. Some strains of Plasmodium falciparum, a human malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes. Proc Natl Acad Sci U S A. 2012;109(28):E1957–62. doi: 10.1073/pnas.1121183109 22623529; PubMed Central PMCID: PMC3396512.
18. Ghosh AK, Devenport M, Jethwaney D, Kalume DE, Pandey A, Anderson VE, et al. Malaria parasite invasion of the mosquito salivary gland requires interaction between the Plasmodium TRAP and the Anopheles saglin proteins. PLoS pathogens. 2009;5(1):e1000265. doi: 10.1371/journal.ppat.1000265 19148273; PubMed Central PMCID: PMC2613030.
19. Ghosh AK, Coppens I, Gardsvoll H, Ploug M, Jacobs-Lorena M. Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut. Proc Natl Acad Sci U S A. 2011;108(41):17153–8. doi: 10.1073/pnas.1103657108 21949403; PubMed Central PMCID: PMC3193258.
20. Vega-Rodriguez J, Ghosh AK, Kanzok SM, Dinglasan RR, Wang S, Bongio NJ, et al. Multiple pathways for Plasmodium ookinete invasion of the mosquito midgut. Proc Natl Acad Sci U S A. 2014;111(4):E492–500. Epub 2014/01/30. doi: 10.1073/pnas.1315517111 1315517111 [pii]. 24474798; PubMed Central PMCID: PMC3910608.
21. Bounkeua V, Li F, Chuquiyauri R, Abeles SR, McClean CM, Neyra V, et al. Lack of molecular correlates of Plasmodium vivax ookinete development. Am J Trop Med Hyg. 2011;85(2):207–13. Epub 2011/08/05. doi: 10.4269/ajtmh.2011.10-0729 21813836; PubMed Central PMCID: PMC3144814.
22. Bounkeua V, Li F, Vinetz JM. In vitro generation of Plasmodium falciparum ookinetes. Am J Trop Med Hyg. 2010;83(6):1187–94. Epub 2010/12/02. doi: 10.4269/ajtmh.2010.10-0433 21118920; PubMed Central PMCID: PMC2990030.
23. Delves MJ, Sinden RE. A semi-automated method for counting fluorescent malaria oocysts increases the throughput of transmission blocking studies. Malaria journal. 2010;9:35. Epub 2010/02/02. doi: 10.1186/1475-2875-9-35 20113492; PubMed Central PMCID: PMC2824803.
24. Ghosh AK, Dinglasan RR, Ikadai H, Jacobs-Lorena M. An improved method for the in vitro differentiation of Plasmodium falciparum gametocytes into ookinetes. Malaria journal. 2010;9 (1)(194). http://dx.doi.org/10.1186/1475-2875-9-194. 2010408089.
25. Ghosh AK, Jacobs-Lorena M. In Vitro Differentiation of Plasmodium falciparum Gametocytes into Ookinetes. Methods in molecular biology. 2013;923:27–33. Epub 2012/09/20. doi: 10.1007/978-1-62703-026-7_3 22990769.
26. Mikolajczak SA, Vaughan AM, Kangwanrangsan N, Roobsoong W, Fishbaugher M, Yimamnuaychok N, et al. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. Cell host & microbe. 2015;17(4):526–35. doi: 10.1016/j.chom.2015.02.011 25800544.
27. Soulard V, Bosson-Vanga H, Lorthiois A, Roucher C, Franetich JF, Zanghi G, et al. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice. Nat Commun. 2015;6:7690. Epub 2015/07/25. doi: 10.1038/ncomms8690 26205537; PubMed Central PMCID: PMCPMC4525212.
28. March S, Ng S, Velmurugan S, Galstian A, Shan J, Logan DJ, et al. A microscale human liver platform that supports the hepatic stages of Plasmodium falciparum and vivax. Cell host & microbe. 2013;14(1):104–15. Epub 2013/07/23. doi: 10.1016/j.chom.2013.06.005 23870318; PubMed Central PMCID: PMC3780791.
29. Ng S, Schwartz RE, March S, Galstian A, Gural N, Shan J, et al. Human iPSC-derived hepatocyte-like cells support plasmodium liver-stage infection in vitro. Stem Cell Reports. 2015;4 (3):348–59. http://dx.doi.org/10.1016/j.stemcr.2015.01.002. doi: 10.1016/j.stemcr.2015.01.002 25660406.
30. Dembele L, Franetich JF, Lorthiois A, Gego A, Zeeman AM, Kocken CH, et al. Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nat Med. 2014;20(3):307–12. Epub 2014/02/11. doi: 10.1038/nm.3461 24509527.
31. Vaughan AM, Pinapati RS, Cheeseman IH, Camargo N, Fishbaugher M, Checkley LA, et al. Plasmodium falciparum genetic crosses in a humanized mouse model. Nature methods. 2015;12(7):631–3. Epub 2015/06/02. doi: 10.1038/nmeth.3432 26030447; PubMed Central PMCID: PMC4547688.
32. Voorberg-van der Wel A, Zeeman AM, van Amsterdam SM, van den Berg A, Klooster EJ, Iwanaga S, et al. Transgenic fluorescent Plasmodium cynomolgi liver stages enable live imaging and purification of Malaria hypnozoite-forms. PloS one. 2013;8(1):e54888. doi: 10.1371/journal.pone.0054888 23359816; PubMed Central PMCID: PMC3554669.
33. Herrera S, Solarte Y, Jordan-Villegas A, Echavarria JF, Rocha L, Palacios R, et al. Consistent safety and infectivity in sporozoite challenge model of Plasmodium vivax in malaria-naive human volunteers. Am J Trop Med Hyg. 2011;84(2 Suppl):4–11. Epub 2011/02/15. doi: 10.4269/ajtmh.2011.09-0498 84/2_Suppl/4 [pii]. 21292872; PubMed Central PMCID: PMC3032484.
34. Seder RA, Chang LJ, Enama ME, Zephir KL, Sarwar UN, Gordon IJ, et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science. 2013;341(6152):1359–65. Epub 2013/08/10. doi: 10.1126/science.1241800 science.1241800 [pii]. 23929949.
35. Sheehy SH, Spencer AJ, Douglas AD, Sim BK, Longley RJ, Edwards NJ, et al. Optimising Controlled Human Malaria Infection Studies Using Cryopreserved P. falciparum Parasites Administered by Needle and Syringe. PloS one. 2013;8(6):e65960. Epub 2013/07/05. doi: 10.1371/journal.pone.0065960 PONE-D-12-35789 [pii]. 23823332; PubMed Central PMCID: PMC3688861.
36. Behet MC, Foquet L, van Gemert GJ, Bijker EM, Meuleman P, Leroux-Roels G, et al. Sporozoite immunization of human volunteers under chemoprophylaxis induces functional antibodies against pre-erythrocytic stages of Plasmodium falciparum. Malaria journal. 2014;13:136. Epub 2014/04/09. doi: 10.1186/1475-2875-13-136 1475-2875-13-136 [pii]. 24708526; PubMed Central PMCID: PMC4113136.
37. Talley AK, Healy SA, Finney OC, Murphy SC, Kublin J, Salas CJ, et al. Safety and comparability of controlled human Plasmodium falciparum infection by mosquito bite in malaria-naive subjects at a new facility for sporozoite challenge. PloS one. 2014;9(11):e109654. Epub 2014/11/19. doi: 10.1371/journal.pone.0109654 PONE-D-14-30972 [pii]. 25405724; PubMed Central PMCID: PMC4236046.
38. Gomez-Perez GP, Legarda A, Munoz J, Sim BK, Ballester MR, Dobano C, et al. Controlled human malaria infection by intramuscular and direct venous inoculation of cryopreserved Plasmodium falciparum sporozoites in malaria-naive volunteers: effect of injection volume and dose on infectivity rates. Malaria journal. 2015;14:306. Epub 2015/08/08. doi: 10.1186/s12936-015-0817-x 10.1186/s12936-015-0817-x [pii]. 26245196; PubMed Central PMCID: PMC4527105.
39. Ockenhouse CF, Regules J, Tosh D, Cowden J, Kathcart A, Cummings J, et al. Ad35.CS.01-RTS,S/AS01 Heterologous Prime Boost Vaccine Efficacy against Sporozoite Challenge in Healthy Malaria-Naive Adults. PloS one. 2015;10(7):e0131571. Epub 2015/07/07. doi: 10.1371/journal.pone.0131571 PONE-D-14-29774 [pii]. 26148007; PubMed Central PMCID: PMC4492580.
40. Schats R, Bijker EM, van Gemert GJ, Graumans W, van de Vegte-Bolmer M, van Lieshout L, et al. Heterologous Protection against Malaria after Immunization with Plasmodium falciparum Sporozoites. PloS one. 2015;10(5):e0124243. Epub 2015/05/02. doi: 10.1371/journal.pone.0124243 PONE-D-14-43731 [pii]. 25933168; PubMed Central PMCID: PMC4416703. 25933168
41. Spring M, Polhemus M, Ockenhouse C. Controlled human malaria infection. The Journal of infectious diseases. 2014;209 Suppl 2:S40–5. Epub 2014/05/30. doi: 10.1093/infdis/jiu063 jiu063 [pii]. 24872394.
42. Russell B, Suwanarusk R, Borlon C, Costa FT, Chu CS, Rijken MJ, et al. A reliable ex vivo invasion assay of human reticulocytes by Plasmodium vivax. Blood. 2011;118(13):e74–81. doi: 10.1182/blood-2011-04-348748 21768300; PubMed Central PMCID: PMC3438884.
43. Russell B, Suwanarusk R, Malleret B, Costa FT, Snounou G, Kevin Baird J, et al. Human ex vivo studies on asexual Plasmodium vivax: the best way forward. International journal for parasitology. 2012;42(12):1063–70. doi: 10.1016/j.ijpara.2012.08.010 23032102.
44. Borlon C, Russell B, Sriprawat K, Suwanarusk R, Erhart A, Renia L, et al. Cryopreserved Plasmodium vivax and cord blood reticulocytes can be used for invasion and short term culture. International journal for parasitology. 2012;42(2):155–60. doi: 10.1016/j.ijpara.2011.10.011 22240310; PubMed Central PMCID: PMC3438882.
45. Noulin F, Borlon C, van den Eede P, Boel L, Verfaillie CM, D'Alessandro U, et al. Cryopreserved reticulocytes derived from hematopoietic stem cells can be invaded by cryopreserved Plasmodium vivax isolates. PloS one. 2012;7(7):e40798. doi: 10.1371/journal.pone.0040798 22844411; PubMed Central PMCID: PMC3402485.
46. Tantular IS, Pusarawati S, Khin L, Kanbe T, Kimura M, Kido Y, et al. Preservation of wild isolates of human malaria parasites in wet ice and adaptation efficacy to in vitro culture. Tropical medicine and health. 2012;40(2):37–45. doi: 10.2149/tmh.2012-07o 23097618; PubMed Central PMCID: PMC3475313.
47. Noulin F, Borlon C, Van Den Abbeele J, D'Alessandro U, Erhart A. 1912–2012: a century of research on Plasmodium vivax in vitro culture. Trends in parasitology. 2013;29(6):286–94. doi: 10.1016/j.pt.2013.03.012 23623759.
48. Galinski MR, Meyer EV, Barnwell JW. Plasmodium vivax: modern strategies to study a persistent parasite's life cycle. Advances in parasitology. 2013;81:1–26. doi: 10.1016/B978-0-12-407826-0.00001-1 23384620.
49. Kurita R, Suda N, Sudo K, Miharada K, Hiroyama T, Miyoshi H, et al. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PloS one. 2013;8(3):e59890. doi: 10.1371/journal.pone.0059890 23533656; PubMed Central PMCID: PMC3606290.
50. Martin-Jaular L, Elizalde-Torrent A, Thomson-Luque R, Ferrer M, Segovia JC, Herreros-Aviles E, et al. Reticulocyte-prone malaria parasites predominantly invade CD71hi immature cells: implications for the development of an in vitro culture for Plasmodium vivax. Malaria journal. 2013;12:434. doi: 10.1186/1475-2875-12-434 24289105; PubMed Central PMCID: PMC4220676.
51. Zeeman AM, der Wel AV, Kocken CH. Ex vivo culture of Plasmodium vivax and Plasmodium cynomolgi and in vitro culture of Plasmodium knowlesi blood stages. Methods in molecular biology. 2013;923:35–49. doi: 10.1007/978-1-62703-026-7_4 22990770.
52. Furuya T, Sa JM, Chitnis CE, Wellems TE, Stedman TT. Reticulocytes from cryopreserved erythroblasts support Plasmodium vivax infection in vitro. Parasitology international. 2014;63(2):278–84. doi: 10.1016/j.parint.2013.11.011 24291603; PubMed Central PMCID: PMC3943572.
53. Noulin F, Manesia JK, Rosanas-Urgell A, Erhart A, Borlon C, Van Den Abbeele J, et al. Hematopoietic stem/progenitor cell sources to generate reticulocytes for Plasmodium vivax culture. PloS one. 2014;9(11):e112496. doi: 10.1371/journal.pone.0112496 25393299; PubMed Central PMCID: PMC4231068.
54. Roobsoong W, Tharinjaroen CS, Rachaphaew N, Chobson P, Schofield L, Cui L, et al. Improvement of culture conditions for long-term in vitro culture of Plasmodium vivax. Malaria journal. 2015;14:297. doi: 10.1186/s12936-015-0815-z 26243280; PubMed Central PMCID: PMC4524445.
55. Thomson-Luque R, Scopel KK. Immature reticulocytes as preferential host cells and the challenges for in vitro culture of Plasmodium vivax. Pathogens and global health. 2015;109(3):91–2. doi: 10.1179/2047772415Z.000000000264 25943155; PubMed Central PMCID: PMC4455358.
56. Moon RW, Hall J, Rangkuti F, Ho YS, Almond N, Mitchell GH, et al. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes. Proc Natl Acad Sci U S A. 2013;110(2):531–6. Epub 2012/12/26. doi: 10.1073/pnas.1216457110 1216457110 [pii]. 23267069; PubMed Central PMCID: PMC3545754.
57. Gruring C, Moon RW, Lim C, Holder AA, Blackman MJ, Duraisingh MT. Human red blood cell-adapted Plasmodium knowlesi parasites: a new model system for malaria research. Cellular microbiology. 2014;16(5):612–20. doi: 10.1111/cmi.12275 24506567; PubMed Central PMCID: PMC4004062.
58. Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A, Tan JC, et al. A major genome region underlying artemisinin resistance in malaria. Science. 2012;336(6077):79–82. Epub 2012/04/12. doi: 10.1126/science.1215966 336/6077/79 [pii]. 22491853; PubMed Central PMCID: PMC3355473.
59. Takala-Harrison S, Clark TG, Jacob CG, Cummings MP, Miotto O, Dondorp AM, et al. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia. Proc Natl Acad Sci U S A. 2013;110(1):240–5. Epub 2012/12/19. doi: 10.1073/pnas.1211205110 1211205110 [pii]. 23248304; PubMed Central PMCID: PMC3538248.
60. Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, Kim S, et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis. 2013;13(12):1043–9. Epub 2013/09/17. doi: 10.1016/S1473-3099(13)70252-4 S1473-3099(13)70252-4 [pii]. 24035558.
61. Witkowski B, Khim N, Chim P, Kim S, Ke S, Kloeung N, et al. Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrobial agents and chemotherapy. 2013;57(2):914–23. Epub 2012/12/05. doi: 10.1128/AAC.01868-12 AAC.01868-12 [pii]. 23208708; PubMed Central PMCID: PMC3553720.
62. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505(7481):50–5. Epub 2013/12/20. doi: 10.1038/nature12876 24352242.
63. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371(5):411–23. Epub 2014/07/31. doi: 10.1056/NEJMoa1314981 25075834; PubMed Central PMCID: PMC4143591.
64. Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis. 2015;15(4):415–21. Epub 2015/02/24. doi: 10.1016/S1473-3099(15)70032-0 S1473-3099(15)70032-0 [pii]. 25704894; PubMed Central PMCID: PMC4374103.
65. Winzeler EA, Manary MJ. Drug resistance genomics of the antimalarial drug artemisinin. Genome Biol. 2014;15(11):544. Epub 2014/12/04. doi: 10.1186/s13059-014-0544-6 25470531; PubMed Central PMCID: PMCPMC4283579.
66. Fairhurst RM, Dondorp AM. Artemisinin-Resistant Plasmodium falciparum Malaria. Microbiology spectrum. 2016;4(3). Epub 2016/06/24. doi: 10.1128/microbiolspec.EI10-0013-2016 27337450; PubMed Central PMCID: PMCPMC4992992.
67. Tilley L, Straimer J, Gnadig NF, Ralph SA, Fidock DA. Artemisinin Action and Resistance in Plasmodium falciparum. Trends in parasitology. 2016;32(9):682–96. Epub 2016/06/13. doi: 10.1016/j.pt.2016.05.010 27289273; PubMed Central PMCID: PMCPMC5007624.
68. MacRae JI, Dixon MW, Dearnley MK, Chua HH, Chambers JM, Kenny S, et al. Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum. BMC Biol. 2013;11:67. Epub 2013/06/15. doi: 10.1186/1741-7007-11-67 23763941; PubMed Central PMCID: PMC3704724.
69. Gulati S, Ekland EH, Ruggles KV, Chan RB, Jayabalasingham B, Zhou B, et al. Profiling the Essential Nature of Lipid Metabolism in Asexual Blood and Gametocyte Stages of Plasmodium falciparum. Cell host & microbe. 2015;18(3):371–81. doi: 10.1016/j.chom.2015.08.003 26355219; PubMed Central PMCID: PMC4567697.
70. Dao A, Yaro AS, Diallo M, Timbine S, Huestis DL, Kassogue Y, et al. Signatures of aestivation and migration in Sahelian malaria mosquito populations. Nature. 2014;516(7531):387–90. doi: 10.1038/nature13987 25470038; PubMed Central PMCID: PMC4306333.
71. Mitchell SN, Stevenson BJ, Muller P, Wilding CS, Egyir-Yawson A, Field SG, et al. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc Natl Acad Sci U S A. 2012;109(16):6147–52. Epub 2012/03/31. doi: 10.1073/pnas.1203452109 1203452109 [pii]. 22460795; PubMed Central PMCID: PMC3341073.
72. Kwiatkowska RM, Platt N, Poupardin R, Irving H, Dabire RK, Mitchell S, et al. Dissecting the mechanisms responsible for the multiple insecticide resistance phenotype in Anopheles gambiae s.s., M form, from Vallee du Kou, Burkina Faso. Gene. 2013;519(1):98–106. Epub 2013/02/06. doi: 10.1016/j.gene.2013.01.036 S0378-1119(13)00077-2 [pii]. 23380570; PubMed Central PMCID: PMC3611593.
73. Riveron JM, Yunta C, Ibrahim SS, Djouaka R, Irving H, Menze BD, et al. A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector. Genome Biol. 2014;15(2):R27. Epub 2014/02/26. doi: 10.1186/gb-2014-15-2-r27 gb-2014-15-2-r27 [pii]. 24565444; PubMed Central PMCID: PMC4054843.
74. Reidenbach KR, Neafsey DE, Costantini C, Sagnon N, Simard F, Ragland GJ, et al. Patterns of genomic differentiation between ecologically differentiated M and S forms of Anopheles gambiae in West and Central Africa. Genome Biol Evol. 2012;4(12):1202–12. Epub 2012/11/08. doi: 10.1093/gbe/evs095 evs095 [pii]. 23132896; PubMed Central PMCID: PMC3542583.
75. Pinto J, Egyir-Yawson A, Vicente JI, Gomes B, Santolamazza F, Moreno M, et al. Geographic population structure of the African malaria vectorAnopheles gambiaesuggests a role for the forest-savannah biome transition as a barrier to gene flow. Evolutionary Applications. 2013;6(6):910–24. doi: 10.1111/eva.12075 24062800
76. O'Loughlin SM, Magesa S, Mbogo C, Mosha F, Midega J, Lomas S, et al. Genomic analyses of three malaria vectors reveals extensive shared polymorphism but contrasting population histories. Mol Biol Evol. 2014;31(4):889–902. Epub 2014/01/11. doi: 10.1093/molbev/msu040 msu040 [pii]. 24408911; PubMed Central PMCID: PMC3969563.
77. Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, et al. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science. 2015;347(6217):1258522. Epub 2015/01/03. doi: 10.1126/science.1258522 1258522 [pii] science.1258522 [pii]. 25554792; PubMed Central PMCID: PMC4380271.
78. van Schaijk BC, Vos MW, Janse CJ, Sauerwein RW, Khan SM. Removal of heterologous sequences from Plasmodium falciparum mutants using FLPe-recombinase. PloS one. 2010;5(11):e15121. doi: 10.1371/journal.pone.0015121 21152048; PubMed Central PMCID: PMC2994908.
79. Muralidharan V, Oksman A, Iwamoto M, Wandless TJ, Goldberg DE. Asparagine repeat function in a Plasmodium falciparum protein assessed via a regulatable fluorescent affinity tag. Proc Natl Acad Sci U S A. 2011;108(11):4411–6. Epub 2011/03/04. doi: 10.1073/pnas.1018449108 21368162; PubMed Central PMCID: PMC3060247.
80. O'Neill MT, Phuong T, Healer J, Richard D, Cowman AF. Gene deletion from Plasmodium falciparum using FLP and Cre recombinases: implications for applied site-specific recombination. International journal for parasitology. 2011;41(1):117–23. doi: 10.1016/j.ijpara.2010.08.001 20816845.
81. Straimer J, Lee MC, Lee AH, Zeitler B, Williams AE, Pearl JR, et al. Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases. Nature methods. 2012;9(10):993–8. doi: 10.1038/nmeth.2143 22922501; PubMed Central PMCID: PMC3697006.
82. Collins CR, Das S, Wong EH, Andenmatten N, Stallmach R, Hackett F, et al. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle. Molecular microbiology. 2013;88(4):687–701. doi: 10.1111/mmi.12206 23489321; PubMed Central PMCID: PMC3708112.
83. Prommana P, Uthaipibull C, Wongsombat C, Kamchonwongpaisan S, Yuthavong Y, Knuepfer E, et al. Inducible knockdown of Plasmodium gene expression using the glmS ribozyme. PloS one. 2013;8(8):e73783. doi: 10.1371/journal.pone.0073783 24023691; PubMed Central PMCID: PMC3758297.
84. Goldfless SJ, Wagner JC, Niles JC. Versatile control of Plasmodium falciparum gene expression with an inducible protein-RNA interaction. Nat Commun. 2014;5:5329. doi: 10.1038/ncomms6329 25370483; PubMed Central PMCID: PMC4223869.
85. Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio JJ. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nature biotechnology. 2014;32(8):819–21. doi: 10.1038/nbt.2925 24880488.
86. Wagner JC, Platt RJ, Goldfless SJ, Zhang F, Niles JC. Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum. Nature methods. 2014;11(9):915–8. doi: 10.1038/nmeth.3063 25108687; PubMed Central PMCID: PMC4199390.
87. Windbichler N, Menichelli M, Papathanos PA, Thyme SB, Li H, Ulge UY, et al. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature. 2011;473(7346):212–5. doi: 10.1038/nature09937 21508956; PubMed Central PMCID: PMC3093433.
88. Isaacs AT, Jasinskiene N, Tretiakov M, Thiery I, Zettor A, Bourgouin C, et al. Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development. Proc Natl Acad Sci U S A. 2012;109(28):E1922–30. doi: 10.1073/pnas.1207738109 22689959; PubMed Central PMCID: PMC3396534.
89. Bernardini F, Galizi R, Menichelli M, Papathanos PA, Dritsou V, Marois E, et al. Site-specific genetic engineering of the Anopheles gambiae Y chromosome. Proc Natl Acad Sci U S A. 2014;111(21):7600–5. doi: 10.1073/pnas.1404996111 24821795; PubMed Central PMCID: PMC4040617.
90. Galizi R, Doyle LA, Menichelli M, Bernardini F, Deredec A, Burt A, et al. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat Commun. 2014;5:3977. doi: 10.1038/ncomms4977 24915045; PubMed Central PMCID: PMC4057611.
91. Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci U S A. 2015;112(49):E6736–43. doi: 10.1073/pnas.1521077112 26598698; PubMed Central PMCID: PMC4679060.
92. Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature biotechnology. 2016;34(1):78–83. doi: 10.1038/nbt.3439 26641531.
93. Moreno M, Tong C, Guzman M, Chuquiyauri R, Llanos-Cuentas A, Rodriguez H, et al. Infection of laboratory-colonized Anopheles darlingi mosquitoes by Plasmodium vivax. Am J Trop Med Hyg. 2014;90(4):612–6. doi: 10.4269/ajtmh.13-0708 24534811; PubMed Central PMCID: PMC3973502.
94. Batchelor JD, Zahm JA, Tolia NH. Dimerization of Plasmodium vivax DBP is induced upon receptor binding and drives recognition of DARC. Nature structural & molecular biology. 2011;18(8):908–14. doi: 10.1038/nsmb.2088 21743458; PubMed Central PMCID: PMC3150435.
95. Batchelor JD, Malpede BM, Omattage NS, DeKoster GT, Henzler-Wildman KA, Tolia NH. Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC. PLoS pathogens. 2014;10(1):e1003869. doi: 10.1371/journal.ppat.1003869 24415938; PubMed Central PMCID: PMC3887093.
96. Chen E, Paing MM, Salinas N, Sim BK, Tolia NH. Structural and functional basis for inhibition of erythrocyte invasion by antibodies that target Plasmodium falciparum EBA-175. PLoS pathogens. 2013;9(5):e1003390. doi: 10.1371/journal.ppat.1003390 23717209; PubMed Central PMCID: PMC3662668.
97. Chen E, Salinas ND, Ntumngia FB, Adams JH, Tolia NH. Structural Analysis of the Synthetic Duffy Binding Protein (DBP) Antigen DEKnull Relevant for Plasmodium vivax Malaria Vaccine Design. PLOS Neglected Tropical Diseases. 2015;9(3):e0003644. doi: 10.1371/journal.pntd.0003644 25793371
98. Thera MA, Doumbo OK, Coulibaly D, Laurens MB, Ouattara A, Kone AK, et al. A field trial to assess a blood-stage malaria vaccine. N Engl J Med. 2011;365(11):1004–13. Epub 2011/09/16. doi: 10.1056/NEJMoa1008115 21916638; PubMed Central PMCID: PMC3242358.
99. Ouattara A, Takala-Harrison S, Thera MA, Coulibaly D, Niangaly A, Saye R, et al. Molecular basis of allele-specific efficacy of a blood-stage malaria vaccine: vaccine development implications. The Journal of infectious diseases. 2013;207(3):511–9. Epub 2012/12/04. doi: 10.1093/infdis/jis709 jis709 [pii]. 23204168; PubMed Central PMCID: PMC3537449.
100. Graves SF, Kouriba B, Diarra I, Daou M, Niangaly A, Coulibaly D, et al. Strain-specific Plasmodium falciparum multifunctional CD4(+) T cell cytokine expression in Malian children immunized with the FMP2.1/AS02A vaccine candidate. Vaccine. 2016;34(23):2546–55. Epub 2016/04/19. doi: 10.1016/j.vaccine.2016.04.019 S0264-410X(16)30148-7 [pii]. 27087149.
101. Gueirard P, Tavares J, Thiberge S, Bernex F, Ishino T, Milon G, et al. Development of the malaria parasite in the skin of the mammalian host. Proc Natl Acad Sci U S A. 2010;107(43):18640–5. doi: 10.1073/pnas.1009346107 20921402; PubMed Central PMCID: PMC2972976.
102. Gruring C, Heiber A, Kruse F, Ungefehr J, Gilberger TW, Spielmann T. Development and host cell modifications of Plasmodium falciparum blood stages in four dimensions. Nat Commun. 2011;2:165. doi: 10.1038/ncomms1169 21266965.
103. Joice R, Nilsson SK, Montgomery J, Dankwa S, Egan E, Morahan B, et al. Plasmodium falciparum transmission stages accumulate in the human bone marrow. Science translational medicine. 2014;6(244):244re5. doi: 10.1126/scitranslmed.3008882 25009232; PubMed Central PMCID: PMC4175394.
104. Pukrittayakamee S, Imwong M, Singhasivanon P, Stepniewska K, Day NJ, White NJ. Effects of different antimalarial drugs on gametocyte carriage in P. vivax malaria. Am J Trop Med Hyg. 2008;79(3):378–84. Epub 2008/09/12. 79/3/378 [pii]. 18784229.
105. Douglas NM, Simpson JA, Phyo AP, Siswantoro H, Hasugian AR, Kenangalem E, et al. Gametocyte dynamics and the role of drugs in reducing the transmission potential of Plasmodium vivax. The Journal of infectious diseases. 2013;208(5):801–12. Epub 2013/06/15. doi: 10.1093/infdis/jit261 23766527; PubMed Central PMCID: PMCPMC3733516.
106. Abdul-Ghani R, Basco LK, Beier JC, Mahdy MA. Inclusion of gametocyte parameters in anti-malarial drug efficacy studies: filling a neglected gap needed for malaria elimination. Malaria journal. 2015;14:413. Epub 2015/10/21. doi: 10.1186/s12936-015-0936-4 26481312; PubMed Central PMCID: PMCPMC4617745.
107. Okumu FO, Killeen GF, Ogoma S, Biswaro L, Smallegange RC, Mbeyela E, et al. Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PloS one. 2010;5(1):e8951. Epub 2010/02/04. doi: 10.1371/journal.pone.0008951 20126628; PubMed Central PMCID: PMC2812511.
108. Mukabana WR, Mweresa CK, Otieno B, Omusula P, Smallegange RC, van Loon JJ, et al. A novel synthetic odorant blend for trapping of malaria and other African mosquito species. J Chem Ecol. 2012;38(3):235–44. Epub 2012/03/20. doi: 10.1007/s10886-012-0088-8 22426893; PubMed Central PMCID: PMC3310138.
109. Menger DJ, Otieno B, de Rijk M, Mukabana WR, van Loon JJ, Takken W. A push-pull system to reduce house entry of malaria mosquitoes. Malaria journal. 2014;13:119. Epub 2014/03/29. 1doi: 10.1186/1475-2875-13-119 1475-2875-13-119 [pii]. 24674451; PubMed Central PMCID: PMC3986670.
110. Menger DJ, Van Loon JJ, Takken W. Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Med Vet Entomol. 2014;28(4):407–13. Epub 2014/05/07. doi: 10.1111/mve.12061 24797537.
111. Verhulst NO, Qiu YT, Beijleveld H, Maliepaard C, Knights D, Schulz S, et al. Composition of Human Skin Microbiota Affects Attractiveness to Malaria Mosquitoes. PLoS One. 2011;6(12):e28991. doi: 10.1371/journal.pone.0028991 22216154
112. Kelly M, Su CY, Schaber C, Crowley JR, Hsu FF, Carlson JR, et al. Malaria parasites produce volatile mosquito attractants. MBio. 2015;6(2). Epub 2015/03/26. doi: 10.1128/mBio.00235-15 e00235-15 [pii] mBio.00235-15 [pii]. 25805727; PubMed Central PMCID: PMC4453533.
113. Kumar S, Molina-Cruz A, Gupta L, Rodrigues J, Barillas-Mury C. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae. Science. 2010;327(5973):1644–8. doi: 10.1126/science.1184008 20223948; PubMed Central PMCID: PMC3510679.
114. Molina-Cruz A, Garver LS, Alabaster A, Bangiolo L, Haile A, Winikor J, et al. The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system. Science. 2013;340(6135):984–7. Epub 2013/05/11. doi: 10.1126/science.1235264 science.1235264 [pii]. 23661646; PubMed Central PMCID: PMC3807741.
115. Oliveira Gde A, Lieberman J, Barillas-Mury C. Epithelial nitration by a peroxidase/NOX5 system mediates mosquito antiplasmodial immunity. Science. 2012;335(6070):856–9. doi: 10.1126/science.1209678 22282475; PubMed Central PMCID: PMC3444286.
116. Ramphul UN, Garver LS, Molina-Cruz A, Canepa GE, Barillas-Mury C. Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells. Proc Natl Acad Sci U S A. 2015;112(5):1273–80. Epub 2015/01/02. doi: 10.1073/pnas.1423586112 1423586112 [pii]. 25552553; PubMed Central PMCID: PMC4321252.
117. Eldering M, Morlais I, van Gemert GJ, van de Vegte-Bolmer M, Graumans W, Siebelink-Stoter R, et al. Variation in susceptibility of African Plasmodium falciparum malaria parasites to TEP1 mediated killing in Anopheles gambiae mosquitoes. Sci Rep. 2016;6:20440. Epub 2016/02/11. doi: 10.1038/srep20440 srep20440 [pii]. 26861587; PubMed Central PMCID: PMC4748223.
118. Gupta L, Molina-Cruz A, Kumar S, Rodrigues J, Dixit R, Zamora RE, et al. The STAT pathway mediates late-phase immunity against Plasmodium in the mosquito Anopheles gambiae. Cell host & microbe. 2009;5(5):498–507. doi: 10.1016/j.chom.2009.04.003 19454353; PubMed Central PMCID: PMC2701194.
119. Smith RC, Eappen AG, Radtke AJ, Jacobs-Lorena M. Regulation of anti-Plasmodium immunity by a LITAF-like transcription factor in the malaria vector Anopheles gambiae. PLoS pathogens. 2012;8(10):e1002965. doi: 10.1371/journal.ppat.1002965 23093936; PubMed Central PMCID: PMC3475675.
120. Li J, Wang X, Zhang G, Githure JI, Yan G, James AA. Genome-block expression-assisted association studies discover malaria resistance genes in Anopheles gambiae. Proc Natl Acad Sci U S A. 2013;110(51):20675–80. doi: 10.1073/pnas.1321024110 24297936; PubMed Central PMCID: PMC3870758.
121. Ojo KK, Pfander C, Mueller NR, Burstroem C, Larson ET, Bryan CM, et al. Transmission of malaria to mosquitoes blocked by bumped kinase inhibitors. The Journal of clinical investigation. 2012;122(6):2301–5. doi: 10.1172/JCI61822 22565309; PubMed Central PMCID: PMC3366411.
122. Mathias DK, Pastrana-Mena R, Ranucci E, Tao D, Ferruti P, Ortega C, et al. A small molecule glycosaminoglycan mimetic blocks Plasmodium invasion of the mosquito midgut. PLoS pathogens. 2013;9(11):e1003757. doi: 10.1371/journal.ppat.1003757 24278017; PubMed Central PMCID: PMC3836724.
123. Sala KA, Nishiura H, Upton LM, Zakutansky SE, Delves MJ, Iyori M, et al. The Plasmodium berghei sexual stage antigen PSOP12 induces anti-malarial transmission blocking immunity both in vivo and in vitro. Vaccine. 2015;33(3):437–45. Epub 2014/12/03. doi: 10.1016/j.vaccine.2014.11.038 25454088.
124. Dembele L, Gego A, Zeeman AM, Franetich JF, Silvie O, Rametti A, et al. Towards an in vitro model of Plasmodium hypnozoites suitable for drug discovery. PloS one. 2011;6(3):e18162. doi: 10.1371/journal.pone.0018162 21483865; PubMed Central PMCID: PMC3069045.
125. Vaughan AM, Mikolajczak SA, Wilson EM, Grompe M, Kaushansky A, Camargo N, et al. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. The Journal of clinical investigation. 2012;122(10):3618–28. Epub 2012/09/22. doi: 10.1172/JCI62684 22996664; PubMed Central PMCID: PMC3461911.
126. Zeeman AM, van Amsterdam SM, McNamara CW, Voorberg-van der Wel A, Klooster EJ, van den Berg A, et al. KAI407, a potent non-8-aminoquinoline compound that kills Plasmodium cynomolgi early dormant liver stage parasites in vitro. Antimicrobial agents and chemotherapy. 2014;58(3):1586–95. doi: 10.1128/AAC.01927-13 24366744; PubMed Central PMCID: PMC3957848.
127. McCarthy JS, Griffin PM, Sekuloski S, Bright AT, Rockett R, Looke D, et al. Experimentally induced blood-stage Plasmodium vivax infection in healthy volunteers. The Journal of infectious diseases. 2013;208(10):1688–94. Epub 2013/08/03. doi: 10.1093/infdis/jit394 jit394 [pii]. 23908484; PubMed Central PMCID: PMC3888148.
128. McCarthy JS, Marquart L, Sekuloski S, Trenholme K, Elliott S, Griffin P, et al. Linking Murine and Human Plasmodium falciparum Challenge Models in a Translational Path for Antimalarial Drug Development. Antimicrobial agents and chemotherapy. 2016;60(6):3669–75. Epub 2016/04/06. doi: 10.1128/AAC.02883-15 AAC.02883-15 [pii]. 27044554; PubMed Central PMCID: PMC4879391.
129. Swann J, Corey V, Scherer CA, Kato N, Comer E, Maetani M, et al. High-Throughput Luciferase-Based Assay for the Discovery of Therapeutics That Prevent Malaria. ACS Infect Dis. 2016;2(4):281–93. Epub 2016/06/09. doi: 10.1021/acsinfecdis.5b00143 27275010; PubMed Central PMCID: PMC4890880.
130. Hoeijmakers WA, Bartfai R, Stunnenberg HG. Transcriptome analysis using RNA-Seq. Methods in molecular biology. 2013;923:221–39. Epub 2012/09/20. doi: 10.1007/978-1-62703-026-7_15 22990781.
131. Otto TD, Bohme U, Jackson AP, Hunt M, Franke-Fayard B, Hoeijmakers WA, et al. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. BMC Biol. 2014;12:86. Epub 2014/11/02. doi: 10.1186/s12915-014-0086-0 s12915-014-0086-0 [pii]. 25359557; PubMed Central PMCID: PMC4242472.
132. Yamagishi J, Natori A, Tolba ME, Mongan AE, Sugimoto C, Katayama T, et al. Interactive transcriptome analysis of malaria patients and infecting Plasmodium falciparum. Genome Res. 2014;24(9):1433–44. Epub 2014/08/06. doi: 10.1101/gr.158980.113 gr.158980.113 [pii]. 25091627; PubMed Central PMCID: PMC4158759.
133. Kaneko I, Iwanaga S, Kato T, Kobayashi I, Yuda M. Genome-Wide Identification of the Target Genes of AP2-O, a Plasmodium AP2-Family Transcription Factor. PLoS pathogens. 2015;11(5):e1004905. Epub 2015/05/29. doi: 10.1371/journal.ppat.1004905 PPATHOGENS-D-14-02008 [pii]. 26018192; PubMed Central PMCID: PMC4446032.
134. Eshar S, Altenhofen L, Rabner A, Ross P, Fastman Y, Mandel-Gutfreund Y, et al. PfSR1 controls alternative splicing and steady-state RNA levels in Plasmodium falciparum through preferential recognition of specific RNA motifs. Molecular microbiology. 2015;96(6):1283–97. Epub 2015/03/27. doi: 10.1111/mmi.13007 25807998.
135. Flannery EL, Fidock DA, Winzeler EA. Using genetic methods to define the targets of compounds with antimalarial activity. J Med Chem. 2013;56(20):7761–71. Epub 2013/08/10. doi: 10.1021/jm400325j 23927658; PubMed Central PMCID: PMC3880619.
136. Miotto O, Amato R, Ashley EA, MacInnis B, Almagro-Garcia J, Amaratunga C, et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet. 2015;47(3):226–34. Epub 2015/01/20. doi: 10.1038/ng.3189 25599401; PubMed Central PMCID: PMC4545236.
137. Baragana B, Hallyburton I, Lee MC, Norcross NR, Grimaldi R, Otto TD, et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature. 2015;522(7556):315–20. Epub 2015/06/19. doi: 10.1038/nature14451 nature14451 [pii]. 26085270; PubMed Central PMCID: PMC4700930.
138. Bopp SE, Manary MJ, Bright AT, Johnston GL, Dharia NV, Luna FL, et al. Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families. PLoS Genet. 2013;9(2):e1003293. Epub 2013/02/15. doi: 10.1371/journal.pgen.1003293 PGENETICS-D-12-01478 [pii]. 23408914; PubMed Central PMCID: PMC3567157.
139. Nair S, Nkhoma SC, Serre D, Zimmerman PA, Gorena K, Daniel BJ, et al. Single-cell genomics for dissection of complex malaria infections. Genome Res. 2014;24(6):1028–38. Epub 2014/05/09. doi: 10.1101/gr.168286.113 gr.168286.113 [pii]. 24812326; PubMed Central PMCID: PMC4032849.
140. The malERA Refresh Consultative Panel on Insecticide and Drug Resistance. malERA: An updated research agenda for insecticide and drug resistance in malaria elimination and eradication. PLoS Med. 2017;14(11):e1002450 doi: 10.1371/journal.pmed.1002450
141. Gomes AR, Bushell E, Schwach F, Girling G, Anar B, Quail MA, et al. A genome-scale vector resource enables high-throughput reverse genetic screening in a malaria parasite. Cell host & microbe. 2015;17(3):404–13. Epub 2015/03/04. doi: 10.1016/j.chom.2015.01.014 S1931-3128(15)00034-7 [pii]. 25732065; PubMed Central PMCID: PMC4362957.
142. Schwach F, Bushell E, Gomes AR, Anar B, Girling G, Herd C, et al. PlasmoGEM, a database supporting a community resource for large-scale experimental genetics in malaria parasites. Nucleic Acids Research. 2015;43(Database issue):D1176–D82. doi: 10.1093/nar/gku1143. PMC4383951. 25593348
143. Guttery DS, Poulin B, Ramaprasad A, Wall RJ, Ferguson DJ, Brady D, et al. Genome-wide functional analysis of Plasmodium protein phosphatases reveals key regulators of parasite development and differentiation. Cell host & microbe. 2014;16(1):128–40. Epub 2014/07/11. doi: 10.1016/j.chom.2014.05.020 S1931-3128(14)00219-4 [pii]. 25011111; PubMed Central PMCID: PMC4094981.
144. Lin JW, Meireles P, Prudencio M, Engelmann S, Annoura T, Sajid M, et al. Loss-of-function analyses defines vital and redundant functions of the Plasmodium rhomboid protease family. Molecular microbiology. 2013;88(2):318–38. Epub 2013/03/16. doi: 10.1111/mmi.12187 23490234.
145. Matthews K, Kalanon M, Chisholm SA, Sturm A, Goodman CD, Dixon MW, et al. The Plasmodium translocon of exported proteins (PTEX) component thioredoxin-2 is important for maintaining normal blood-stage growth. Molecular microbiology. 2013;89(6):1167–86. Epub 2013/07/23. doi: 10.1111/mmi.12334 23869529.
146. Philip N, Waters AP. Conditional Degradation of Plasmodium Calcineurin Reveals Functions in Parasite Colonization of both Host and Vector. Cell host & microbe. 2015;18(1):122–31. Epub 2015/06/30. doi: 10.1016/j.chom.2015.05.018 S1931-3128(15)00250-4 [pii]. 26118994; PubMed Central PMCID: PMC4509507.
147. Burda PC, Roelli MA, Schaffner M, Khan SM, Janse CJ, Heussler VT. A Plasmodium phospholipase is involved in disruption of the liver stage parasitophorous vacuole membrane. PLoS pathogens. 2015;11(3):e1004760. Epub 2015/03/19. doi: 10.1371/journal.ppat.1004760 PPATHOGENS-D-14-02170 [pii]. 25786000; PubMed Central PMCID: PMC4364735.
148. Falae A, Combe A, Amaladoss A, Carvalho T, Menard R, Bhanot P. Role of Plasmodium berghei cGMP-dependent protein kinase in late liver stage development. The Journal of biological chemistry. 2010;285(5):3282–8. Epub 2009/11/27. doi: 10.1074/jbc.M109.070367 M109.070367 [pii]. 19940133; PubMed Central PMCID: PMC2823412.
149. Lehmann C, Heitmann A, Mishra S, Burda PC, Singer M, Prado M, et al. A cysteine protease inhibitor of plasmodium berghei is essential for exo-erythrocytic development. PLoS pathogens. 2014;10(8):e1004336. Epub 2014/08/29. doi: 10.1371/journal.ppat.1004336 25166051; PubMed Central PMCID: PMC4148452.
150. Rennenberg A, Lehmann C, Heitmann A, Witt T, Hansen G, Nagarajan K, et al. Exoerythrocytic Plasmodium parasites secrete a cysteine protease inhibitor involved in sporozoite invasion and capable of blocking cell death of host hepatocytes. PLoS pathogens. 2010;6(3):e1000825. Epub 2010/04/03. doi: 10.1371/journal.ppat.1000825 20361051; PubMed Central PMCID: PMC2845656.
151. Elsworth B, Matthews K, Nie CQ, Kalanon M, Charnaud SC, Sanders PR, et al. PTEX is an essential nexus for protein export in malaria parasites. Nature. 2014;511(7511):587–91. Epub 2014/07/22. doi: 10.1038/nature13555 nature13555 [pii]. 25043043.
152. Pasini EM, Braks JA, Fonager J, Klop O, Aime E, Spaccapelo R, et al. Proteomic and genetic analyses demonstrate that Plasmodium berghei blood stages export a large and diverse repertoire of proteins. Mol Cell Proteomics. 2013;12(2):426–48. Epub 2012/12/01. doi: 10.1074/mcp.M112.021238 M112.021238 [pii]. 23197789; PubMed Central PMCID: PMC3567864.
153. Ingmundson A, Nahar C, Brinkmann V, Lehmann MJ, Matuschewski K. The exported Plasmodium berghei protein IBIS1 delineates membranous structures in infected red blood cells. Molecular microbiology. 2012;83(6):1229–43. Epub 2012/02/15. doi: 10.1111/j.1365-2958.2012.08004.x 22329949; PubMed Central PMCID: PMC3502748.
154. Matz JM, Goosmann C, Brinkmann V, Grutzke J, Ingmundson A, Matuschewski K, et al. The Plasmodium berghei translocon of exported proteins reveals spatiotemporal dynamics of tubular extensions. Sci Rep. 2015;5:12532. Epub 2015/07/30. doi: 10.1038/srep12532 srep12532 [pii]. 26219962; PubMed Central PMCID: PMC4518229.
155. Mbengue A, Bhattacharjee S, Pandharkar T, Liu H, Estiu G, Stahelin RV, et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature. 2015;520(7549):683–7. Epub 2015/04/16. doi: 10.1038/nature14412 25874676; PubMed Central PMCID: PMCPMC4417027.
156. Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347(6220):428–31. Epub 2014/12/17. doi: 10.1126/science.1260867 science.1260867 [pii]. 25502314; PubMed Central PMCID: PMC4349400.
157. Adjalley SH, Chabbert CD, Klaus B, Pelechano V, Steinmetz LM. Landscape and Dynamics of Transcription Initiation in the Malaria Parasite Plasmodium falciparum. Cell Rep. 2016;14(10):2463–75. Epub 2016/03/08. doi: 10.1016/j.celrep.2016.02.025 S2211-1247(16)30128-0 [pii]. 26947071; PubMed Central PMCID: PMC4806524.
158. ENCODE Project Consortium, Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816. doi: 10.1038/nature05874 17571346; PubMed Central PMCID: PMC2212820.
159. Sana TR, Gordon DB, Fischer SM, Tichy SE, Kitagawa N, Lai C, et al. Global mass spectrometry based metabolomics profiling of erythrocytes infected with Plasmodium falciparum. PloS one. 2013;8(4):e60840. Epub 2013/04/18. doi: 10.1371/journal.pone.0060840 PONE-D-12-01745 [pii]. 23593322; PubMed Central PMCID: PMC3621881.
160. Sengupta A, Ghosh S, Basant A, Malusare S, Johri P, Pathak S, et al. Global host metabolic response to Plasmodium vivax infection: a 1H NMR based urinary metabonomic study. Malaria journal. 2011;10:384. Epub 2011/12/27. doi: 10.1186/1475-2875-10-384 1475-2875-10-384 [pii]. 22196439; PubMed Central PMCID: PMC3298531.
161. Teng R, Lehane AM, Winterberg M, Shafik SH, Summers RL, Martin RE, et al. 1H-NMR metabolite profiles of different strains of Plasmodium falciparum. Biosci Rep. 2014;34(6):e00150. Epub 2014/11/19. doi: 10.1042/BSR20140134 e00150 [pii] BSR20140134 [pii]. 25405893; PubMed Central PMCID: PMC4240024.
162. Allman EL, Painter HJ, Samra J, Carrasquilla M, Llinas M. Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways. Antimicrobial agents and chemotherapy. 2016;60(11):6635–49. Epub 2016/08/31. doi: 10.1128/AAC.01224-16 27572391; PubMed Central PMCID: PMCPMC5075069.
163. Creek DJ, Chua HH, Cobbold SA, Nijagal B, MacRae JI, Dickerman BK, et al. Metabolomics-Based Screening of the Malaria Box Reveals both Novel and Established Mechanisms of Action. Antimicrobial agents and chemotherapy. 2016;60(11):6650–63. Epub 2016/08/31. doi: 10.1128/AAC.01226-16 27572396; PubMed Central PMCID: PMCPMC5075070.
164. Park YH, Shi YP, Liang B, Medriano CA, Jeon YH, Torres E, et al. High-resolution metabolomics to discover potential parasite-specific biomarkers in a Plasmodium falciparum erythrocytic stage culture system. Malaria journal. 2015;14:122. Epub 2015/04/19. doi: 10.1186/s12936-015-0651-1 10.1186/s12936-015-0651-1 [pii]. 25889340; PubMed Central PMCID: PMC4377044.
165. Tritten L, Keiser J, Godejohann M, Utzinger J, Vargas M, Beckonert O, et al. Metabolic profiling framework for discovery of candidate diagnostic markers of malaria. Sci Rep. 2013;3:2769. Epub 2013/09/27. doi: 10.1038/srep02769 srep02769 [pii]. 24067624.
166. The malERA Refresh Consultative Panel on Characterising the Reservoir and Measuring Transmission. malERA: An updated research agenda for characterizing the reservoir and measuring transmission in malaria elimination and eradication. PLoS Med. 2017;14(11):e1002452. doi: 10.1371/journal.pmed.1002452
167. Liu W, Sundararaman SA, Loy DE, Learn GH, Li Y, Plenderleith LJ, et al. Multigenomic Delineation of Plasmodium Species of the Laverania Subgenus Infecting Wild-Living Chimpanzees and Gorillas. Genome Biol Evol. 2016;8(6):1929–39. Epub 2016/06/12. doi: 10.1093/gbe/evw128 evw128 [pii]. 27289102; PubMed Central PMCID: PMC4943199.
168. Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ, Sundararaman SA, et al. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. International journal for parasitology. 2017;47(2–3):87–97. Epub 2016/07/07. doi: 10.1016/j.ijpara.2016.05.008 27381764; PubMed Central PMCID: PMCPMC5205579.
169. Sundararaman SA, Plenderleith LJ, Liu W, Loy DE, Learn GH, Li Y, et al. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat Commun. 2016;7:11078. Epub 2016/03/24. doi: 10.1038/ncomms11078 27002652; PubMed Central PMCID: PMCPMC4804174.
170. Aguilar R, Magallon-Tejada A, Achtman AH, Moraleda C, Joice R, Cistero P, et al. Molecular evidence for the localization of Plasmodium falciparum immature gametocytes in bone marrow. Blood. 2014;123(7):959–66. Epub 2013/12/18. doi: 10.1182/blood-2013-08-520767 24335496; PubMed Central PMCID: PMC4067503.
171. Fontaine MC, Pease JB, Steele A, Waterhouse RM, Neafsey DE, Sharakhov IV, et al. Mosquito genomics. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science. 2015;347(6217):1258524. Epub 2014/11/29. doi: 10.1126/science.1258524 1258524 [pii] science.1258524 [pii]. 25431491; PubMed Central PMCID: PMC4380269.
172. Parker JE, Angarita-Jaimes N, Abe M, Towers CE, Towers D, McCall PJ. Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact. Sci Rep. 2015;5:13392. Epub 2015/09/02. doi: 10.1038/srep13392 srep13392 [pii]. 26323965; PubMed Central PMCID: PMC4642575.
173. The Ag1000G Consortium. Anopheles gambiae 1000 Genomes Project: Ag1000G 2014 [updated 2016, Accessed Nov 1st, 2017]. Available from: https://www.malariagen.net/projects/ag1000g.
174. Baldini F, Gabrieli P, South A, Valim C, Mancini F, Catteruccia F. The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito Anopheles gambiae. PLoS Biol. 2013;11(10):e1001695. Epub 2013/11/10. doi: 10.1371/journal.pbio.1001695 24204210; PubMed Central PMCID: PMC3812110.
175. Gabrieli P, Kakani EG, Mitchell SN, Mameli E, Want EJ, Mariezcurrena Anton A, et al. Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(46):16353–8. Epub 2014/11/05. 10.1073/pnas.1410488111. 25368171; PubMed Central PMCID: PMC4246312. doi: 10.1073/pnas.1410488111 25368171
176. Mitchell SN, Kakani EG, South A, Howell PI, Waterhouse RM, Catteruccia F. Mosquito biology. Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes. Science. 2015;347(6225):985–8. Epub 2015/02/28. 10.1126/science.1259435. 25722409; PubMed Central PMCID: PMC4373528. doi: 10.1126/science.1259435 25722409
177. Cai H, Zhou Z, Gu J, Wang Y. Comparative Genomics and Systems Biology of Malaria Parasites Plasmodium. Current bioinformatics. 2012;7(4). Epub 2013/12/04. doi: 10.2174/157489312803900965 24298232; PubMed Central PMCID: PMCPMC3844129.
178. Rabinovich RN, Drakeley C, Djimde AA, Hall BF, Hay SI, Hemingway J, et al. malERA: An updated research agenda for malaria elimination and eradication. PLoS Med. 2017;14(11):e1002456. doi: 10.1371/journal.pmed.1002456
179. de Koning-Ward TF, Gilson PR, Crabb BS. Advances in molecular genetic systems in malaria. Nature reviews Microbiology. 2015;13(6):373–87. doi: 10.1038/nrmicro3450 25978707.
180. Oye KA, Esvelt K, Appleton E, Catteruccia F, Church G, Kuiken T, et al. Biotechnology. Regulating gene drives. Science. 2014;345(6197):626–8. Epub 2014/07/19. doi: 10.1126/science.1254287 science.1254287 [pii]. 25035410.
181. Laveran A. Note sur un nouveau parasite trouvé dans le sang de plusieurs malades atteints de fièvre palustres. Bull Acad Med. 1880;9:1235–6.
182. Sturm A, Amino R, van de Sand C, Regen T, Retzlaff S, Rennenberg A, et al. Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science. 2006;313(5791):1287–90. doi: 10.1126/science.1129720 16888102.
183. Zimmerman PA, Howes RE. Malaria diagnosis for malaria elimination. Curr Opin Infect Dis. 2015;28(5):446–54. Epub 2015/07/24. doi: 10.1097/QCO.0000000000000191 26203855.
184. Berna AZ, McCarthy JS, Wang RX, Saliba KJ, Bravo FG, Cassells J, et al. Analysis of Breath Specimens for Biomarkers of Plasmodium falciparum Infection. The Journal of infectious diseases. 2015;212(7):1120–8. Epub 2015/03/27. doi: 10.1093/infdis/jiv176 jiv176 [pii]. 25810441; PubMed Central PMCID: PMC4559192.
185. The malERA Refresh Consultative Panel on Basic Science and Enabling Technologies. An updated research agenda for basic science and enabling technologies in malaria elimination and eradication. 2017. 10.1371/journal.pmed.1002451.
186. Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. Journal of extracellular vesicles. 2015;4:27066. doi: 10.3402/jev.v4.27066 25979354; PubMed Central PMCID: PMC4433489.
187. Lin J, Li J, Huang B, Liu J, Chen X, Chen XM, et al. Exosomes: novel biomarkers for clinical diagnosis. TheScientificWorldJournal. 2015;2015:657086. doi: 10.1155/2015/657086 25695100; PubMed Central PMCID: PMC4322857.
188. Campos FM, Franklin BS, Teixeira-Carvalho A, Filho AL, de Paula SC, Fontes CJ, et al. Augmented plasma microparticles during acute Plasmodium vivax infection. Malaria journal. 2010;9:327. doi: 10.1186/1475-2875-9-327 21080932; PubMed Central PMCID: PMC2998527.
189. Nantakomol D, Dondorp AM, Krudsood S, Udomsangpetch R, Pattanapanyasat K, Combes V, et al. Circulating red cell-derived microparticles in human malaria. The Journal of infectious diseases. 2011;203(5):700–6. doi: 10.1093/infdis/jiq104 21282195; PubMed Central PMCID: PMC3072726.
190. Martin-Jaular L, Nakayasu ES, Ferrer M, Almeida IC, Del Portillo HA. Exosomes from Plasmodium yoelii-infected reticulocytes protect mice from lethal infections. PloS one. 2011;6(10):e26588. doi: 10.1371/journal.pone.0026588 22046311; PubMed Central PMCID: PMC3202549.
191. Mantel PY, Hoang AN, Goldowitz I, Potashnikova D, Hamza B, Vorobjev I, et al. Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell host & microbe. 2013;13(5):521–34. doi: 10.1016/j.chom.2013.04.009 23684304; PubMed Central PMCID: PMC3687518.
192. Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug M, et al. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell. 2013;153(5):1120–33. doi: 10.1016/j.cell.2013.04.029 23683579.
193. Dormitzer PR, Grandi G, Rappuoli R. Structural vaccinology starts to deliver. Nature reviews Microbiology. 2012;10(12):807–13. doi: 10.1038/nrmicro2893 23154260.
194. Kulp DW, Schief WR. Advances in structure-based vaccine design. Current opinion in virology. 2013;3(3):322–31. doi: 10.1016/j.coviro.2013.05.010 23806515; PubMed Central PMCID: PMC4102719.
195. Welsh RM, Fujinami RS. Pathogenic epitopes, heterologous immunity and vaccine design. Nature reviews Microbiology. 2007;5(7):555–63. doi: 10.1038/nrmicro1709 17558423.
196. Li H, O'Donoghue AJ, van der Linden WA, Xie SC, Yoo E, Foe IT, et al. Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature. 2016;530(7589):233–6. Epub 2016/02/13. doi: 10.1038/nature16936 nature16936 [pii]. 26863983; PubMed Central PMCID: PMC4755332.
197. Sun M, Li W, Blomqvist K, Das S, Hashem Y, Dvorin JD, et al. Dynamical features of the Plasmodium falciparum ribosome during translation. Nucleic Acids Res. 2015;43(21):10515–24. Epub 2015/10/04. doi: 10.1093/nar/gkv991 gkv991 [pii]. 26432834; PubMed Central PMCID: PMC4666399.
198. Wong W, Bai XC, Brown A, Fernandez IS, Hanssen E, Condron M, et al. Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. Elife. 2014;3. Epub 2014/06/11. doi: 10.7554/eLife.03080 24913268; PubMed Central PMCID: PMC4086275.
199. Neafsey DE, Juraska M, Bedford T, Benkeser D, Valim C, Griggs A, et al. Genetic Diversity and Protective Efficacy of the RTS,S/AS01 Malaria Vaccine. N Engl J Med. 2015;373(21):2025–37. Epub 2015/10/22. doi: 10.1056/NEJMoa1505819 26488565; PubMed Central PMCID: PMCPMC4762279.
200. Mueller I, Shakri AR, Chitnis CE. Development of vaccines for Plasmodium vivax malaria. Vaccine. 2015;33(52):7489–95. Epub 2015/10/03. doi: 10.1016/j.vaccine.2015.09.060 S0264-410X(15)01336-5 [pii]. 26428453.
201. Hovlid ML, Winzeler EA. Phenotypic Screens in Antimalarial Drug Discovery. Trends in parasitology. 2016;32(9):697–707. Epub 2016/06/02. doi: 10.1016/j.pt.2016.04.014 27247245; PubMed Central PMCID: PMCPMC5007148.
202. Williamson AE, Ylioja PM, Robertson MN, Antonova-Koch Y, Avery V, Baell JB, et al. Open Source Drug Discovery: Highly Potent Antimalarial Compounds Derived from the Tres Cantos Arylpyrroles. ACS central science. 2016;2(10):687–701. Epub 2016/11/02. doi: 10.1021/acscentsci.6b00086 27800551; PubMed Central PMCID: PMCPMC5084075.
203. Van Voorhis WC, Adams JH, Adelfio R, Ahyong V, Akabas MH, Alano P, et al. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS pathogens. 2016;12(7):e1005763. Epub 2016/07/29. doi: 10.1371/journal.ppat.1005763 27467575; PubMed Central PMCID: PMCPMC4965013.
204. Spangenberg T, Burrows JN, Kowalczyk P, McDonald S, Wells TN, Willis P. The open access malaria box: a drug discovery catalyst for neglected diseases. PloS one. 2013;8(6):e62906. Epub 2013/06/27. doi: 10.1371/journal.pone.0062906 23798988; PubMed Central PMCID: PMCPMC3684613.
205. Bando H, Okado K, Guelbeogo WM, Badolo A, Aonuma H, Nelson B, et al. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity. Sci Rep. 2013;3:1641. Epub 2013/04/11. doi: 10.1038/srep01641 23571408; PubMed Central PMCID: PMC3622076.
206. Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, et al. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science. 2011;332(6031):855–8. doi: 10.1126/science.1201618 21566196; PubMed Central PMCID: PMC4154605.
207. Dennison NJ, BenMarzouk-Hidalgo OJ, Dimopoulos G. MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota. Dev Comp Immunol. 2015;49(1):170–8. Epub 2014/12/03. doi: 10.1016/j.dci.2014.10.016 25445902; PubMed Central PMCID: PMC4447300.
208. Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong Y, Kang S, et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS pathogens. 2014;10(10):e1004398. doi: 10.1371/journal.ppat.1004398 25340821; PubMed Central PMCID: PMC4207801.
209. Bian G, Zhou G, Lu P, Xi Z. Replacing a native Wolbachia with a novel strain results in an increase in endosymbiont load and resistance to dengue virus in a mosquito vector. PLoS Negl Trop Dis. 2013;7(6):e2250. Epub 2013/06/12. doi: 10.1371/journal.pntd.0002250 23755311; PubMed Central PMCID: PMC3675004.
210. Shaw WR, Marcenac P, Childs LM, Buckee CO, Baldini F, Sawadogo SP, et al. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development. Nat Commun. 2016;7:11772. doi: 10.1038/ncomms11772 27243367.
211. Baldini F, Segata N, Pompon J, Marcenac P, Shaw WR, Dabire RK, et al. Evidence of natural Wolbachia infections in field populations of Anopheles gambiae. Nat Commun. 2014;5:3985. doi: 10.1038/ncomms4985 24905191; PubMed Central PMCID: PMC4059924.
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2017 Číslo 11
- Statiny indukovaná myopatie: Jak na diferenciální diagnostiku?
- MUDr. Dana Vondráčková: Hepatopatie sú pri liečbe metamizolom väčším strašiakom ako agranulocytóza
- Vztah mezi statiny a rizikem vzniku nádorových onemocnění − metaanalýza
- Nech brouka žít… Ať žije astma!
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
Najčítanejšie v tomto čísle
- Postmenopausal hormone therapy and risk of stroke: A pooled analysis of data from population-based cohort studies
- HIV pre-exposure prophylaxis and early antiretroviral treatment among female sex workers in South Africa: Results from a prospective observational demonstration project
- Extensive virologic and immunologic characterization in an HIV-infected individual following allogeneic stem cell transplant and analytic cessation of antiretroviral therapy: A case study
- Bioequivalence between innovator and generic tacrolimus in liver and kidney transplant recipients: A randomized, crossover clinical trial