malERA: An updated research agenda for insecticide and drug resistance in malaria elimination and eradication
Janet Hemingway and colleagues examine progress in research on insecticide and drug resistance in malaria elimination and eradication and propose a research agenda.
Vyšlo v časopise:
malERA: An updated research agenda for insecticide and drug resistance in malaria elimination and eradication. PLoS Med 14(11): e32767. doi:10.1371/journal.pmed.1002450
Kategorie:
Collection Review
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1002450
Souhrn
Janet Hemingway and colleagues examine progress in research on insecticide and drug resistance in malaria elimination and eradication and propose a research agenda.
Zdroje
1. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature.; 2015;526: 207–211. doi: 10.1038/nature15535 26375008
2. Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F, et al. A research agenda to underpin malaria eradication. PLoS Med. 2011;8: e1000406. doi: 10.1371/journal.pmed.1000406 21311579
3. White N, Nosten F, Looareesuwan S, Watkins W, Marsh K, Snow R, et al. Averting a malaria disaster. Lancet. 1999;353: 1965–1967. doi: 10.1016/S0140-6736(98)07367-X 10371589
4. Hemingway J, Ranson H, Magill A, Kolaczinski J, Fornadel C, Gimnig J, et al. Averting a malaria disaster: will insecticide resistance derail malaria control? Lancet. 2016; doi: 10.1016/S0140-6736(15)00417-1
5. Knox TB, Juma EO, Ochomo EO, Pates Jamet H, Ndungo L, Chege P, et al. An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region. Parasit Vectors. 2014;7: 76. doi: 10.1186/1756-3305-7-76 24559061
6. Dai Y, Huang X, Cheng P, Liu L, Wang H, Wang H, et al. Development of insecticide resistance in malaria vector Anopheles sinensis populations from Shandong province in China. Malar J. 2015;14: 62. doi: 10.1186/s12936-015-0592-8 25880316
7. WHO | World Malaria Report 2015. WHO. World Health Organization; 2016
8. Toé KH, Jones CM, N’Fale S, Ismail HM, Dabiré RK, Ranson H. Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness, Burkina Faso. Emerg Infect Dis. 2014;20: 1691–6. doi: 10.3201/eid2010.140619 25279965
9. Ranson H, Lissenden N. Insecticide Resistance in African Anopheles Mosquitoes: A Worsening Situation that Needs Urgent Action to Maintain Malaria Control. Trends Parasitol. 2015;32: 187–196. doi: 10.1016/j.pt.2015.11.010 26826784
10. Glunt KD, Abílio AP, Bassat Q, Bulo H, Gilbert AE, Huijben S, et al. Long-lasting insecticidal nets no longer effectively kill the highly resistant Anopheles funestus of southern Mozambique. Malar J. 2015;14: 298. doi: 10.1186/s12936-015-0807-z 26242977
11. Riveron JM, Chiumia M, Menze BD, Barnes KG, Irving H, Ibrahim SS, et al. Rise of multiple insecticide resistance in Anopheles funestus in Malawi: a major concern for malaria vector control. Malar J. 2015;14: 344. doi: 10.1186/s12936-015-0877-y 26370361
12. Hargreaves K, Koekemoer LL, Brooke BD, Hunt RH, Mthembu J, Coetzee M. Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med Vet Entomol. 2000;14: 181–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/10872862. Date accessed 17 Sept 2017 10872862
13. Schuurkamp GJ, Spicer PE, Kereu RK, Bulungol PK, Rieckmann KH. Chloroquine-resistant Plasmodium vivax in Papua New Guinea. Trans R Soc Trop Med Hyg. 86: 121–2. Available: http://www.ncbi.nlm.nih.gov/pubmed/1440763. Date accessed 17 Sept 2017 1440763
14. Mehlotra RK, Fujioka H, Roepe PD, Janneh O, Ursos LMB, Jacobs-Lorena V, et al. Evolution of a unique Plasmodium falciparum chloroquine-resistance phenotype in association with pfcrt polymorphism in Papua New Guinea and South America. Proc Natl Acad Sci. 2001;98: 12689–12694. doi: 10.1073/pnas.221440898 11675500
15. Wootton JC, Feng X, Ferdig MT, Cooper RA, Mu J, Baruch DI, et al. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature. 2002;418: 320–3. doi: 10.1038/nature00813 12124623
16. Ariey F, Fandeur T, Durand R, Randrianarivelojosia M, Jambou R, Legrand E, et al. Invasion of Africa by a single pfcrt allele of South East Asian type. Malar J. 2006;5: 34. doi: 10.1186/1475-2875-5-34 16638153
17. Roper C, Pearce R, Bredenkamp B, Gumede J, Drakeley C, Mosha F, et al. Antifolate antimalarial resistance in southeast Africa: a population-based analysis. Lancet. 2003;361: 1174–81. doi: 10.1016/S0140-6736(03)12951-0 12686039
18. Mita T, Venkatesan M, Ohashi J, Culleton R, Takahashi N, Tsukahara T, et al. Limited geographical origin and global spread of sulfadoxine-resistant dhps alleles in Plasmodium falciparum populations. J Infect Dis. 2011;204: 1980–8. doi: 10.1093/infdis/jir664 22021623
19. White NJ. Delaying antimalarial drug resistance with combination chemotherapy. Parassitologia. 1999;41: 301–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/10697872. Date accessed 17 Sept 2017 10697872
20. Miotto O, Amato R, Ashley EA, MacInnis B, Almagro-Garcia J, Amaratunga C, et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet.; 2015;47: 226–34. doi: 10.1038/ng.3189 25599401
21. Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis. 2015;211: 670–9. doi: 10.1093/infdis/jiu491 25180241
22. Ménard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, Amodu O, et al. A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms. http://dx.doi.org/101056/NEJMoa1513137. Massachusetts Medical Society; 2016;
23. Rosenthal PJ, The interplay between drug resistance and fitness in malaria parasites. Mol. Microbiol 89, 1025–38 2013 doi: 10.1111/mmi.12349 23899091
24. Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Bergé JB, Devonshire AL, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7: 179–84. Available: http://www.ncbi.nlm.nih.gov/pubmed/9535162 Date accessed 17 Sept 2017 9535162
25. Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000;9: 491–497. doi: 10.1046/j.1365-2583.2000.00209.x 11029667
26. Strode C, Donegan S, Garner P, Enayati AA, Hemingway J. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African anopheline mosquitoes: systematic review and meta-analysis. PLoS Med. 2014;11: e1001619. doi: 10.1371/journal.pmed.1001619 24642791
27. Bagi J, Grisales N, Corkill R, Morgan JC, N’Falé S, Brogdon WG, et al. When a discriminating dose assay is not enough: measuring the intensity of insecticide resistance in malaria vectors. Malar J. 2015;14: 210. doi: 10.1186/s12936-015-0721-4 25985896
28. Weetman D, Donnelly MJ. Evolution of insecticide resistance diagnostics in malaria vectors. Trans R Soc Trop Med Hyg. 2015;109: 291–3. doi: 10.1093/trstmh/trv017 25740955
29. Platt N, Kwiatkowska RM, Irving H, Diabaté A, Dabire R, Wondji CS. Target-site resistance mutations (kdr and RDL), but not metabolic resistance, negatively impact male mating competiveness in the malaria vector Anopheles gambiae. Heredity; 2015;115: 243–52. doi: 10.1038/hdy.2015.33 25899013
30. Alout H, Ndam NT, Sandeu MM, Djégbe I, Chandre F, Dabiré RK, et al. Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates. PLoS ONE. 2013;8: e63849. doi: 10.1371/journal.pone.0063849 23704944
31. Gatton ML, Chitnis N, Churcher T, Donnelly MJ, Ghani AC, Godfray HCJ, et al. The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution. 2013;67: 1218–30. doi: 10.1111/evo.12063 23550770
32. White LJ, Flegg JA, Phyo AP, Wiladpai-ngern JH, Bethell D, Plowe C, et al. Defining the in vivo phenotype of artemisinin-resistant falciparum malaria: a modelling approach. PLoS Med. 2015;12: e1001823. doi: 10.1371/journal.pmed.1001823 25919029
33. Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, Kim S, et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis. 2013;13: 1043–9. doi: 10.1016/S1473-3099(13)70252-4 24035558
34. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505: 50–5. doi: 10.1038/nature12876 24352242
35. Straimer J, Gnädig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347: 428–31. doi: 10.1126/science.1260867 25502314
36. Taylor SM, Parobek CM, DeConti DK, Kayentao K, Coulibaly SO, Greenwood BM, et al. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in Sub-Saharan Africa: a molecular epidemiologic study. J Infect Dis. 2015;211: 680–8. doi: 10.1093/infdis/jiu467 25180240
37. Kamau E, Campino S, Amenga-Etego L, Drury E, Ishengoma D, Johnson K, et al. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J Infect Dis. 2014/11/05. KEMRI/United States Army Medical Research Unit-Kenya, Kisumu. Wellcome Trust Sanger Institute, Hinxton. Navrongo Health Research Centre. National Institute for Medical Research, Tanga, Tanzania. Wellcome Trust Centre for Human Genetics, University of Oxford; 2015;211: 1352–1355. doi: 10.1093/infdis/jiu608 25367300
38. World Health Organization. Status report on artemisinin and ACT resistance. 2015.
39. Chenet SM, Akinyi Okoth S, Huber CS, Chandrabose J, Lucchi NW, Talundzic E, et al. Independent Emergence of the Plasmodium falciparum Kelch Propeller Domain Mutant Allele C580Y in Guyana. J Infect Dis. 2016;213: 1472–5. doi: 10.1093/infdis/jiv752 26690347
40. Dondorp AM. New genetic markers for piperaquine resistance in Plasmodium falciparum. Lancet Infectious Diseases http://dx.doi.org/10.1016/S1473-3099(16)30212-5 Date accessed 17 Sept 2017
41. Maiga AW, Fofana B, Sagara I, Dembele D, Dara A, Traore OB, et al. No evidence of delayed parasite clearance after oral artesunate treatment of uncomplicated falciparum malaria in Mali. Am J Trop Med Hyg. 2012;87: 23–8. doi: 10.4269/ajtmh.2012.12-0058 22764287
42. Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z, Yeo T, et al. Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science. 2015;347: 431–5. doi: 10.1126/science.1260403 25502316
43. Chaorattanakawee S, Saunders DL, Sea D, Chanarat N, Yingyuen K, Sundrakes S, et al. Ex Vivo Drug Susceptibility Testing and Molecular Profiling of Clinical Plasmodium falciparum Isolates from Cambodia from 2008 to 2013 Suggest Emerging Piperaquine Resistance. Antimicrob Agents Chemother. 2015;59: 4631–43. doi: 10.1128/AAC.00366-15 26014942
44. Leang R, Taylor WRJ, Bouth DM, Song L, Tarning J, Char MC, et al. Evidence of Plasmodium falciparum Malaria Multidrug Resistance to Artemisinin and Piperaquine in Western Cambodia: Dihydroartemisinin-Piperaquine Open-Label Multicenter Clinical Assessment. Antimicrob Agents Chemother. 2015;59: 4719–26. doi: 10.1128/AAC.00835-15 26014949
45. Plowe C V, Kublin JG, Doumbo OK, Peters W, Jones A, Radloff P, et al. P. falciparum dihydrofolate reductase and dihydropteroate synthase mutations: epidemiology and role in clinical resistance to antifolates. Drug Resist Updat. 1998;1: 389–96. doi: 10.1016/s1368-7646(98)80014-9 17092820
46. Conrad MD, LeClair N, Arinaitwe E, Wanzira H, Kakuru A, Bigira V, et al. Comparative impacts over 5 years of artemisinin-based combination therapies on Plasmodium falciparum polymorphisms that modulate drug sensitivity in Ugandan children. J Infect Dis. 2014;210: 344–53. doi: 10.1093/infdis/jiu141 24610872
47. Thomsen TT, Madsen LB, Hansson HH, Tomás EVE, Charlwood D, Bygbjerg IC, et al. Rapid selection of Plasmodium falciparum chloroquine resistance transporter gene and multidrug resistance gene-1 haplotypes associated with past chloroquine and present artemether-lumefantrine use in Inhambane District, southern Mozambique. Am J Trop Med Hyg. 2013;88: 536–41. doi: 10.4269/ajtmh.12-0525 23382159
48. WHO Global Malaria Programme. Minutes of the Technical Expert Group on Drug Efficacy and Response. Available: http://www.who.int/malaria/mpac/mpac-oct2017-teg-drug-efficacy-response-session3.pdf?ua=1. Date accessed 14 Nov 2017.
49. Amaratunga C, Lim P, Suon S, Sreng S, Mao S, Sopha C, et al. Dihydroartemisinin–piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis. 2016;16: 357–365. doi: 10.1016/S1473-3099(15)00487-9 26774243
50. Phyo AP, Lwin KM, Price RN, Ashley EA, Russell B, Sriprawat K, et al. Dihydroartemisinin-piperaquine versus chloroquine in the treatment of Plasmodium vivax malaria in Thailand: a randomized controlled trial. Clin Infect Dis. 2011;53: 977–84. doi: 10.1093/cid/cir631 22002979
51. Price RN, von Seidlein L, Valecha N, Nosten F, Baird JK, White NJ. Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14: 982–91. doi: 10.1016/S1473-3099(14)70855-2 25213732
52. Schousboe ML, Ranjitkar S, Rajakaruna RS, Amerasinghe PH, Morales F, Pearce R, et al. Multiple Origins of Mutations in the mdr1 Gene—A Putative Marker of Chloroquine Resistance in P. vivax. PLoS Negl Trop Dis. 2015;9: e0004196. doi: 10.1371/journal.pntd.0004196 26539821
53. Venkatesan M, Gadalla NB, Stepniewska K, Dahal P, Nsanzabana C, Moriera C, et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine. Am J Trop Med Hyg. 2014;91: 833–43. doi: 10.4269/ajtmh.14-0031 25048375
54. Briët OJ, Penny MA, Hardy D, Awolola TS, Van Bortel W, Corbel V, et al. Effects of pyrethroid resistance on the cost effectiveness of a mass distribution of long-lasting insecticidal nets: a modelling study. Malar J. 2013;12: 77. doi: 10.1186/1475-2875-12-77 23442575
55. Trape J-F. The Public Health Impact of Chloroquine Resistance in Africa. American Society of Tropical Medicine and Hygiene; 2001.
56. Douglas NM, Lampah DA, Kenangalem E, Simpson JA, Poespoprodjo JR, Sugiarto P, et al. Major burden of severe anemia from non-falciparum malaria species in Southern Papua: a hospital-based surveillance study. PLoS Med. 2013;10: e1001575; discussion e1001575. doi: 10.1371/journal.pmed.1001575 24358031
57. Djimde AA, Barger B, Kone A, Beavogui AH, Tekete M, Fofana B, et al. A molecular map of chloroquine resistance in Mali. FEMS Immunol Med Microbiol. 2010;58: 113–8. doi: 10.1111/j.1574-695X.2009.00641.x 20041947
58. Djimdé AA, Dolo A, Ouattara A, Diakité S, Plowe CV, Doumbo OK. Molecular Diagnosis of Resistance to Antimalarial Drugs during Epidemics and in War Zones. J Infect Dis. 2004;190: 853–855. doi: 10.1086/422758 15272415
59. Lim P, Dek D, Try V, Sreng S, Suon S, Fairhurst RM. Decreasing pfmdr1 copy number suggests that Plasmodium falciparum in Western Cambodia is regaining in vitro susceptibility to mefloquine. Antimicrob Agents Chemother. 2015;59: 2934–7. doi: 10.1128/AAC.05163-14 25712365
60. Hmooda Toto K, Bashir AI, Mnzava AP, Abdin MSE, Eltaher JS, Banaga AO, et al. The impact of insecticide resistance in Anopheles arabiensis on malaria incidence and prevalence in Sudan and the costs of mitigation. Proc. Natl Acad. Sci. In press.
61. Philip Ricks. The Importance of Insecticide Resistance Monitoring to Maintain IRS Program Effectiveness. 2015. Available: http://www.africairs.net/2015/11/the-pmi-airs-project-presents-at-astmh/ Date accessed 17 Sept 2017
62. Coetzee M, Kruger P, Hunt RH, Durrheim DN, Urbach J, Hansford CF. Malaria in South Africa: 110 years of learning to control the disease. S Afr Med J. 2013;103: 770–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/24079632 doi: 10.7196/samj.7446 24079632
63. WHO | Global plan for insecticide resistance management in malaria vectors. WHO. World Health Organization; 2015
64. Hemingway J, Vontas J, Poupardin R, Raman J, Lines J, Schwabe C, et al. Country-level operational implementation of the Global Plan for Insecticide Resistance Management. Proc Natl Acad Sci U S A. 2013;110: 9397–402. doi: 10.1073/pnas.1307656110 23696658
65. Hemingway J, Beaty BJ, Rowland M, Scott TW, Sharp BL. The Innovative Vector Control Consortium: improved control of mosquito-borne diseases. Trends Parasitol. 2006;22: 308–12. doi: 10.1016/j.pt.2006.05.003 16713358
66. Chanda E, Thomsen EK, Musapa M, Kamuliwo M, Brogdon WG, Norris DE, et al. An Operational Framework for Insecticide Resistance Management Planning. Emerg Infect Dis. Centers for Disease Control and Prevention; 2016;22: 773–9. doi: 10.3201/eid2205.150984 27089119
67. Group TWARN (WWARN) DS. The effect of dosing regimens on the antimalarial efficacy of dihydroartemisinin-piperaquine: a pooled analysis of individual patient data. PLoS Med. 2013;10: e1001564; discussion e1001564. doi: 10.1371/journal.pmed.1001564 24311989
68. Boni MF, Smith DL, Laxminarayan R. Benefits of using multiple first-line therapies against malaria. Proc Natl Acad Sci. 2008;105: 14216–14221. doi: 10.1073/pnas.0804628105 18780786
69. Smith DL, Klein EY, McKenzie FE, Laxminarayan R. Prospective strategies to delay the evolution of anti-malarial drug resistance: weighing the uncertainty. Malar J. B 2010;9: 217. doi: 10.1186/1475-2875-9-217 20653960
70. Nguyen TD, Olliaro P, Dondorp AM, Baird JK, Lam HM, Farrar J, et al. Optimum population-level use of artemisinin combination therapies: a modelling study. Lancet Glob Heal. 2015;3: e758–e766. doi: 10.1016/S2214-109X(15)00162-X 26545449
71. Pongtavornpinyo W1, Yeung S, Hastings IM, Dondorp AM, Day NP, White NJ. Spread of anti-malarial drug resistance: mathematical model with implications for ACT drug policies. Malar J. 2008 Nov 2;7:229. doi: 10.1186/1475-2875-7-229 18976503
72. Boni MF, White NJ, Baird JK, Peters W, Dondorp A, Nosten F, et al. The Community As the Patient in Malaria-Endemic Areas: Preempting Drug Resistance with Multiple First-Line Therapies. PLoS Med. 2016;13: e1001984. doi: 10.1371/journal.pmed.1001984 27022739
73. Maxmen A. Back on TRAC: New trial launched in bid to outpace multidrug-resistant malaria. Nat Med. Nature Research; 2016;22: 220–221. doi: 10.1038/nm0316-220 26937610
74. Hamma M. Impact of seasonal malaria chemoprevention of sulphadoxinepyrimethamine plus amodiaquine on molecular markers resistance of Plasmodium falciparum malaria: A review in West Africa. Clin Rev Opin. A2016;7: 1–10. doi: 10.5897/CRO15.0098
75. Kleinschmidt I, Mnzava AP, Kafy HT, Mbogo C, Bashir AI, Bigoga J, et al. Design of a study to determine the impact of insecticide resistance on malaria vector control: a multi-country investigation. Malar J. 2015;14: 282. doi: 10.1186/s12936-015-0782-4 26194648
76. Thomsen EK, Strode C, Hemmings K, Hughes AJ, Chanda E, Musapa M, et al. Underpinning sustainable vector control through informed insecticide resistance management. PLoS ONE. 2014;9: e99822. doi: 10.1371/journal.pone.0099822 24932861
77. Mugittu K, Ndejembi M, Malisa A, Lemnge M, Premji Z, Mwita A, et al. Therapeutic efficacy of sulfadoxine-pyrimethamine and prevalence of resistance markers in Tanzania prior to revision of malaria treatment policy: Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase mutations in monitoring in vivo re. Am J Trop Med Hyg. 2004;71: 696–702. Available: http://www.ncbi.nlm.nih.gov/pubmed/15642957 15642957
78. Ranson H, Lissenden N. Insecticide Resistance in African Anopheles Mosquitoes: A Worsening Situation that Needs Urgent Action to Maintain Malaria Control. Trends Parasitol. 2015;32: 187–196. doi: 10.1016/j.pt.2015.11.010 26826784
79. Bagi J, Grisales N, Corkill R, Morgan JC, N’Falé S, Brogdon WG, et al. When a discriminating dose assay is not enough: measuring the intensity of insecticide resistance in malaria vectors. Malar J. 2015;14: 210. doi: 10.1186/s12936-015-0721-4 25985896
80. Kulma K, Saddler A, Koella JC. Effects of age and larval nutrition on phenotypic expression of insecticide-resistance in Anopheles mosquitoes. PLoS ONE. 2013;8: e58322. doi: 10.1371/journal.pone.0058322 23484017
81. Oliver S V, Brooke BD, Sinka M, Bangs M, Manguin S, Coetzee M, et al. The effect of multiple blood-feeding on the longevity and insecticide resistant phenotype in the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Parasit Vectors. 2014;7: 390. doi: 10.1186/1756-3305-7-390 25150975
82. Glunt KD, Paaijmans KP, Read AF, Thomas MB, Maxmen A, Kelly-Hope L, et al. Environmental temperatures significantly change the impact of insecticides measured using WHOPES protocols. Malar J. 2014;13: 350. doi: 10.1186/1475-2875-13-350 25187231
83. Strode C, Steen K, Ortelli F, Ranson H. Differential expression of the detoxification genes in the different life stages of the malaria vector Anopheles gambiae. Insect Mol Biol. 2006;15: 523–30. doi: 10.1111/j.1365-2583.2006.00667.x 16907839
84. Sikulu MT, Majambere S, Khatib BO, Ali AS, Hugo LE, Dowell FE. Using a near-infrared spectrometer to estimate the age of anopheles mosquitoes exposed to pyrethroids. PLoS ONE. 2014;9: e90657. doi: 10.1371/journal.pone.0090657 24594705
85. Donnelly MJ, Isaacs AT, Weetman D. Identification, Validation, and Application of Molecular Diagnostics for Insecticide Resistance in Malaria Vectors. Trends Parasitol. 2015;32: 197–206. doi: 10.1016/j.pt.2015.12.001 26750864
86. Lubell Y, Dondorp A, Guérin PJ, Drake T, Meek S, Ashley E, et al. Artemisinin resistance—modelling the potential human and economic costs. Malar J. 2014;13: 452. doi: 10.1186/1475-2875-13-452 25418416
87. Volberding PA, Deeks SG. Antiretroviral therapy and management of HIV infection. Lancet. 2010;376: 49–62. doi: 10.1016/S0140-6736(10)60676-9 20609987
88. Goldberg DE, Siliciano RF, Jacobs WR. Outwitting evolution: fighting drug-resistant TB, malaria, and HIV. Cell. 2012;148: 1271–83. doi: 10.1016/j.cell.2012.02.021 22424234
89. Mitchell PD, Onstad DW. Chapter 2 –Valuing Pest Susceptibility to Control. Insect Resistance Management. 2014. pp. 25–53. doi: 10.1016/B978-0-12-396955-2.00002–3
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2017 Číslo 11
- Statinová intolerance
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Co dělat při intoleranci statinů?
- Pleiotropní účinky statinů na kardiovaskulární systém
- DESATORO PRE PRAX: Aktuálne odporúčanie ESPEN pre nutričný manažment u pacientov s COVID-19
Najčítanejšie v tomto čísle
- Postmenopausal hormone therapy and risk of stroke: A pooled analysis of data from population-based cohort studies
- HIV pre-exposure prophylaxis and early antiretroviral treatment among female sex workers in South Africa: Results from a prospective observational demonstration project
- Extensive virologic and immunologic characterization in an HIV-infected individual following allogeneic stem cell transplant and analytic cessation of antiretroviral therapy: A case study
- Bioequivalence between innovator and generic tacrolimus in liver and kidney transplant recipients: A randomized, crossover clinical trial