#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genome-Wide mRNA Expression Correlates of Viral Control in CD4+ T-Cells from HIV-1-Infected Individuals


There is great interindividual variability in HIV-1 viral setpoint after seroconversion, some of which is known to be due to genetic differences among infected individuals. Here, our focus is on determining, genome-wide, the contribution of variable gene expression to viral control, and to relate it to genomic DNA polymorphism. RNA was extracted from purified CD4+ T-cells from 137 HIV-1 seroconverters, 16 elite controllers, and 3 healthy blood donors. Expression levels of more than 48,000 mRNA transcripts were assessed by the Human-6 v3 Expression BeadChips (Illumina). Genome-wide SNP data was generated from genomic DNA using the HumanHap550 Genotyping BeadChip (Illumina). We observed two distinct profiles with 260 genes differentially expressed depending on HIV-1 viral load. There was significant upregulation of expression of interferon stimulated genes with increasing viral load, including genes of the intrinsic antiretroviral defense. Upon successful antiretroviral treatment, the transcriptome profile of previously viremic individuals reverted to a pattern comparable to that of elite controllers and of uninfected individuals. Genome-wide evaluation of cis-acting SNPs identified genetic variants modulating expression of 190 genes. Those were compared to the genes whose expression was found associated with viral load: expression of one interferon stimulated gene, OAS1, was found to be regulated by a SNP (rs3177979, p = 4.9E-12); however, we could not detect an independent association of the SNP with viral setpoint. Thus, this study represents an attempt to integrate genome-wide SNP signals with genome-wide expression profiles in the search for biological correlates of HIV-1 control. It underscores the paradox of the association between increasing levels of viral load and greater expression of antiviral defense pathways. It also shows that elite controllers do not have a fully distinctive mRNA expression pattern in CD4+ T cells. Overall, changes in global RNA expression reflect responses to viral replication rather than a mechanism that might explain viral control.


Vyšlo v časopise: Genome-Wide mRNA Expression Correlates of Viral Control in CD4+ T-Cells from HIV-1-Infected Individuals. PLoS Pathog 6(2): e32767. doi:10.1371/journal.ppat.1000781
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000781

Souhrn

There is great interindividual variability in HIV-1 viral setpoint after seroconversion, some of which is known to be due to genetic differences among infected individuals. Here, our focus is on determining, genome-wide, the contribution of variable gene expression to viral control, and to relate it to genomic DNA polymorphism. RNA was extracted from purified CD4+ T-cells from 137 HIV-1 seroconverters, 16 elite controllers, and 3 healthy blood donors. Expression levels of more than 48,000 mRNA transcripts were assessed by the Human-6 v3 Expression BeadChips (Illumina). Genome-wide SNP data was generated from genomic DNA using the HumanHap550 Genotyping BeadChip (Illumina). We observed two distinct profiles with 260 genes differentially expressed depending on HIV-1 viral load. There was significant upregulation of expression of interferon stimulated genes with increasing viral load, including genes of the intrinsic antiretroviral defense. Upon successful antiretroviral treatment, the transcriptome profile of previously viremic individuals reverted to a pattern comparable to that of elite controllers and of uninfected individuals. Genome-wide evaluation of cis-acting SNPs identified genetic variants modulating expression of 190 genes. Those were compared to the genes whose expression was found associated with viral load: expression of one interferon stimulated gene, OAS1, was found to be regulated by a SNP (rs3177979, p = 4.9E-12); however, we could not detect an independent association of the SNP with viral setpoint. Thus, this study represents an attempt to integrate genome-wide SNP signals with genome-wide expression profiles in the search for biological correlates of HIV-1 control. It underscores the paradox of the association between increasing levels of viral load and greater expression of antiviral defense pathways. It also shows that elite controllers do not have a fully distinctive mRNA expression pattern in CD4+ T cells. Overall, changes in global RNA expression reflect responses to viral replication rather than a mechanism that might explain viral control.


Zdroje

1. TelentiA

GoldsteinDB

2006 Genomics meets HIV. Nat Rev Microbiol 4 9 18

2. FellayJ

ShiannaKV

GeD

ColomboS

LedergerberB

2007 A Whole-Genome Association Study of Major Determinants for Host Control of HIV-1. Science 317 944 947

3. DalmassoC

CarpentierW

MeyerL

RouziouxC

GoujardC

2008 Distinct genetic loci control plasma HIV-RNA and cellular HIV-DNA levels in HIV-1 infection: the ANRS Genome Wide Association 01 study. PLoS ONE 3 e3907 doi:10.1371/journal.pone.0003907

4. LimouS

LeCS

CoulongesC

CarpentierW

DinaC

2009 Genomewide Association Study of an AIDS-Nonprogression Cohort Emphasizes the Role Played by HLA Genes (ANRS Genomewide Association Study 02). J Infect Dis 199 419 426

5. FellayJ

GeD

ShiannaKV

ColomboS

LedergerberB

2009 Common Genetic Variation and the Control of HIV-1 in Humans. PLoS Genet 5 e1000791 doi:10.1371/journal.pgen.1000791

6. GiriMS

NebozhynM

ShoweL

MontanerLJ

2006 Microarray data on gene modulation by HIV-1 in immune cells: 2000–2006. J Leukoc Biol 80 1031 1043

7. SedaghatAR

GermanJ

TeslovichTM

CofrancescoJJr

JieCC

2008 Chronic CD4+ T-cell activation and depletion in human immunodeficiency virus type 1 infection: type I interferon-mediated disruption of T-cell dynamics. J Virol 82 1870 1883

8. HyrczaMD

KovacsC

LoutfyM

HalpennyR

HeislerL

2007 Distinct transcriptional profiles in ex vivo CD4+ and CD8+ T cells are established early in human immunodeficiency virus type 1 infection and are characterized by a chronic interferon response as well as extensive transcriptional changes in CD8+ T cells. J Virol 81 3477 3486

9. ChunTW

JustementJS

LempickiRA

YangJ

DennisGJr

2003 Gene expression and viral prodution in latently infected, resting CD4+ T cells in viremic versus aviremic HIV-infected individuals. Proc Natl Acad Sci U S A 100 1908 1913

10. ImbeaultM

OuelletM

TremblayMJ

2009 Microarray study reveals that HIV-1 induces rapid type-I interferon-dependent p53 mRNA up-regulation in human primary CD4+ T cells. Retrovirology 6 5

11. GiriMS

NebozyhnM

RaymondA

GekongeB

HancockA

2009 Circulating monocytes in HIV-1-infected viremic subjects exhibit an antiapoptosis gene signature and virus- and host-mediated apoptosis resistance. J Immunol 182 4459 4470

12. NicaAC

DermitzakisET

2008 Using gene expression to investigate the genetic basis of complex disorders. Hum Mol Genet 17 R129 R134

13. VeyrierasJB

KudaravalliS

KimSY

DermitzakisET

GiladY

2008 High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet 4 e1000214 doi:10.1371/journal.pgen.1000214

14. BowieAG

UnterholznerL

2008 Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol 8 911 922

15. OrtizM

GuexN

PatinE

MartinO

XenariosI

2009 Evolutionary Trajectories of Primate Genes Involved in HIV Pathogenesis. Mol Biol Evol 26 2865 2875

16. BrassAL

DykxhoornDM

BenitaY

YanN

EngelmanA

2008 Identification of host proteins required for HIV infection through a functional genomic screen. Science 319 921 926

17. KonigR

ZhouY

EllederD

DiamondTL

BonamyGM

2008 Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135 49 60

18. ZhouH

XuM

HuangQ

GatesAT

ZhangXD

2008 Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4 495 504

19. YeungML

HouzetL

YedavalliVS

JeangKT

2009 A genome-wide short hairpin RNA screening of jurkat T-cells for human proteins contributing to productive HIV-1 replication. J Biol Chem 284 19463 19473

20. LiQ

SmithAJ

SchackerTW

CarlisJV

DuanL

2009 Microarray analysis of lymphatic tissue reveals stage-specific, gene expression signatures in HIV-1 infection. J Immunol 183 1975 1982

21. HeinzenEL

GeD

CroninKD

MaiaJM

ShiannaKV

2008 Tissue-specific genetic control of splicing: implications for the study of complex traits. PLoS Biol 6 e1000001 doi:10.1371/journal.pbio.1000001

22. Bonnevie-NielsenV

FieldLL

LuS

ZhengDJ

LiM

2005 Variation in antiviral 2′,5′-oligoadenylate synthetase (2′5′AS) enzyme activity is controlled by a single-nucleotide polymorphism at a splice-acceptor site in the OAS1 gene. Am J Hum Genet 76 623 633

23. LimJK

LiscoA

McDermottDH

HuynhL

WardJM

2009 Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man. PLoS Pathog 5 e1000321 doi:10.1371/journal.ppat.1000321

24. ZolotukhinAS

FelberBK

1997 Mutations in the nuclear export signal of human ran-binding protein RanBP1 block the Rev-mediated posttranscriptional regulation of human immunodeficiency virus type 1. J Biol Chem 272 11356 11360

25. FinkJ

GuF

LingL

TolfvenstamT

OlfatF

2007 Host gene expression profiling of dengue virus infection in cell lines and patients. PLoS Negl Trop Dis 1 e86 doi:10.1371/journal.pntd.0000086

26. LongHT

HibberdML

HienTT

DungNM

VanNT

2009 Patterns of gene transcript abundance in the blood of children with severe or uncomplicated dengue highlight differences in disease evolution and host response to dengue virus infection. J Infect Dis 199 537 546

27. SimmonsCP

PopperS

DolocekC

ChauTN

GriffithsM

2007 Patterns of host genome-wide gene transcript abundance in the peripheral blood of patients with acute dengue hemorrhagic fever. J Infect Dis 195 1097 1107

28. UbolS

MasrinoulP

ChaijaruwanichJ

KalayanaroojS

CharoensirisuthikulT

2008 Differences in global gene expression in peripheral blood mononuclear cells indicate a significant role of the innate responses in progression of dengue fever but not dengue hemorrhagic fever. J Infect Dis 197 1459 1467

29. WuJQ

DwyerDE

DyerWB

YangYH

WangB

2008 Transcriptional profiles in CD8+ T cells from HIV+ progressors on HAART are characterized by coordinated up-regulation of oxidative phosphorylation enzymes and interferon responses. Virology 380 124 135

30. WenW

ChenS

CaoY

ZhuY

YamamotoY

2005 HIV-1 infection initiates changes in the expression of a wide array of genes in U937 promonocytes and HUT78 T cells. Virus Res 113 26 35

31. HerbeuvalJP

ShearerGM

2007 HIV-1 immunopathogenesis: how good interferon turns bad. Clin Immunol 123 121 128

32. ReinhartTA

FallertBA

PfeiferME

SanghaviS

CapuanoSIII

2002 Increased expression of the inflammatory chemokine CXC chemokine ligand 9/monokine induced by interferon-gamma in lymphoid tissues of rhesus macaques during simian immunodeficiency virus infection and acquired immunodeficiency syndrome. Blood 99 3119 3128

33. AbelK

Alegria-HartmanMJ

RothaeuslerK

MarthasM

MillerCJ

2002 The relationship between simian immunodeficiency virus RNA levels and the mRNA levels of alpha/beta interferons (IFN-alpha/beta) and IFN-alpha/beta-inducible Mx in lymphoid tissues of rhesus macaques during acute and chronic infection. J Virol 76 8433 8445

34. KhatissianE

ToveyMG

CumontMC

MonceauxV

LebonP

1996 The relationship between the interferon alpha response and viral burden in primary SIV infection. AIDS Res Hum Retroviruses 12 1273 1278

35. BosingerSE

HosiawaKA

CameronMJ

PersadD

RanL

2004 Gene expression profiling of host response in models of acute HIV infection. J Immunol 173 6858 6863

36. LedererS

FavreD

WaltersKA

ProllS

KanwarB

2009 Transcriptional profiling in pathogenic and non-pathogenic SIV infections reveals significant distinctions in kinetics and tissue compartmentalization. PLoS Pathog 5 e1000296 doi:10.1371/journal.ppat.1000296

37. MandlJN

BarryAP

VanderfordTH

KozyrN

ChavanR

2008 Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections. Nat Med 14 1077 1087

38. SatoT

OnaiN

YoshiharaH

AraiF

SudaT

2009 Interferon regulatory factor-1 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion. Nat Med doi:10.1038/nm.1973

39. BoassoA

ShearerGM

2008 Chronic innate immune activation as a cause of HIV-1 immunopathogenesis. Clin Immunol 126 235 242

40. BushmanFD

MalaniN

FernandesJ

D'OrsoI

CagneyG

2009 Host cell factors in HIV replication: meta-analysis of genome-wide studies. PLoS Pathog 5 e1000437 doi:10.1371/journal.ppat.1000437

41. TelentiA

2009 HIV-1 host interactions - integration of large scale datasets. F1000 Biology Reports 1 71

42. MartinMP

DeanM

SmithMW

WinklerC

GerrardB

1998 Genetic acceleration of AIDS progression by a promoter variant of CCR5. Science 282 1907 1911

43. GeissGK

BumgarnerRE

BirdittB

DahlT

DowidarN

2008 Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26 317 325

44. SwansonCM

MalimMH

2008 SnapShot: HIV-1 proteins. Cell 133 742, 742

45. GoffSP

2007 Host factors exploited by retroviruses. Nat Rev Microbiol 5 253 263

46. NisoleS

StoyeJP

SaibA

2005 TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 3 799 808

47. HarrisRS

LiddamentMT

2004 Retroviral restriction by APOBEC proteins. Nat Rev Immunol 4 868 877

48. LoeuilletC

DeutschS

CiuffiA

RobyrD

TaffeP

2008 In vitro whole-genome analysis identifies a susceptibility locus for HIV-1. PLoS Biol 6 e32 doi:10.1371/journal.pbio.0060032

49. NeilSJ

ZangT

BieniaszPD

2008 Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451 425 430

50. DunningMJ

Barbosa-MoraisNL

LynchAG

TavareS

RitchieME

2008 Statistical issues in the analysis of Illumina data. BMC Bioinformatics 9 85

51. LinSM

DuP

HuberW

KibbeWA

2008 Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res 36 e11

52. DuP

KibbeWA

LinSM

2008 lumi: a pipeline for processing Illumina microarray. Bioinformatics 24 1547 1548

53. SmythGK

2004 Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3 Article3

54. FengS

WolfingerR

ChuZ

GibsonG

McGrawL

2006 Empirical Bayesian analysis of variance component models for microarray data. J Agric Biol Environ Stats 11 197 209

55. LönnstedtI

SpeedT

2002 Replicated microarray data. Stat Sinica 12 31 46

56. BenjaminiY

HochbergY

1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57 289

57. DennisGJr

ShermanBT

HosackDA

YangJ

GaoW

2003 DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4 3

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#