Transit through the Flea Vector Induces a Pretransmission Innate Immunity Resistance Phenotype in
Yersinia pestis, the agent of plague, is transmitted to mammals by infected fleas. Y. pestis exhibits a distinct life stage in the flea, where it grows in the form of a cohesive biofilm that promotes transmission. After transmission, the temperature shift to 37°C induces many known virulence factors of Y. pestis that confer resistance to innate immunity. These factors are not produced in the low-temperature environment of the flea, however, suggesting that Y. pestis is vulnerable to the initial encounter with innate immune cells at the flea bite site. In this study, we used whole-genome microarrays to compare the Y. pestis in vivo transcriptome in infective fleas to in vitro transcriptomes in temperature-matched biofilm and planktonic cultures, and to the previously characterized in vivo gene expression profile in the rat bubo. In addition to genes involved in metabolic adaptation to the flea gut and biofilm formation, several genes with known or predicted roles in resistance to innate immunity and pathogenicity in the mammal were upregulated in the flea. Y. pestis from infected fleas were more resistant to phagocytosis by macrophages than in vitro-grown bacteria, in part attributable to a cluster of insecticidal-like toxin genes that were highly expressed only in the flea. Our results suggest that transit through the flea vector induces a phenotype that enhances survival and dissemination of Y. pestis after transmission to the mammalian host.
Vyšlo v časopise:
Transit through the Flea Vector Induces a Pretransmission Innate Immunity Resistance Phenotype in. PLoS Pathog 6(2): e32767. doi:10.1371/journal.ppat.1000783
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000783
Souhrn
Yersinia pestis, the agent of plague, is transmitted to mammals by infected fleas. Y. pestis exhibits a distinct life stage in the flea, where it grows in the form of a cohesive biofilm that promotes transmission. After transmission, the temperature shift to 37°C induces many known virulence factors of Y. pestis that confer resistance to innate immunity. These factors are not produced in the low-temperature environment of the flea, however, suggesting that Y. pestis is vulnerable to the initial encounter with innate immune cells at the flea bite site. In this study, we used whole-genome microarrays to compare the Y. pestis in vivo transcriptome in infective fleas to in vitro transcriptomes in temperature-matched biofilm and planktonic cultures, and to the previously characterized in vivo gene expression profile in the rat bubo. In addition to genes involved in metabolic adaptation to the flea gut and biofilm formation, several genes with known or predicted roles in resistance to innate immunity and pathogenicity in the mammal were upregulated in the flea. Y. pestis from infected fleas were more resistant to phagocytosis by macrophages than in vitro-grown bacteria, in part attributable to a cluster of insecticidal-like toxin genes that were highly expressed only in the flea. Our results suggest that transit through the flea vector induces a phenotype that enhances survival and dissemination of Y. pestis after transmission to the mammalian host.
Zdroje
1. PerryRD
FetherstonJD
1997 Yersinia pestis– etiologic agent of plague. Clin Microbiol Rev 10 35 66
2. HinnebuschBJ
RudolphAE
CherepanovP
DixonJE
SchwanTG
2002 Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296 733 735
3. HinnebuschBJ
PerryRD
SchwanTG
1996 Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273 367 370
4. DarbyC
AnanthSL
TanL
HinnebuschBJ
2005 Identification of gmhA, a Yersinia pestis gene required for flea blockage, by using a Caenorhabditis elegans biofilm system. Infect Immun 73 7236 7242
5. BacotAW
MartinCJ
1914 Observations on the mechanism on the transmission of plague by fleas. J Hyg Plague Suppl 313 423 439
6. DarbyC
HsuJW
GhoriN
FalkowS
2002 Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 417 243 244
7. JarrettCO
DeakE
IsherwoodKE
OystonPC
FischerER
2004 Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis 190 783 792
8. KirillinaO
FetherstonJD
BobrovAG
AbneyJ
PerryRD
2004 HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54 75 88
9. BobrovAG
KirillinaO
PerryRD
2005 The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol Lett 247 123 130
10. BeloinC
Da ReS
GhigoJ-M
2005 Colonization of abiotic surfaces.
BöckA
CurtisRIII
KaperJB
NeidhardtFC
NyströmK
EcoSal—Escherichia coli and Salmonella: cellular and molecular biology Washington, D.C. ASM Press
11. SebbaneF
LemaitreN
SturdevantDE
RebeilR
VirtanevaK
2006 Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. Proc Natl Acad Sci U S A 103 11766 11771
12. TerraWR
FerreiraC
JordaoBP
DillonRJ
1996 Digestive enzymes.
LehaneMJ
BillingsleyPF
Biology of the insect midgut London Chapman & Hall 153 194
13. OgaharaT
OhnoM
TakayamaM
IgarashiK
KobayashiH
1995 Accumulation of glutamate by osmotically stressed Escherichia coli is dependent on pH. J Bacteriol 177 5987 5990
14. ChapmanRF
1998 The insects. Structure and function Cambridge, UK Cambridge University Press
15. BoudkoDY
KohnAB
MeleshkevitchEA
DasherMK
SeronTJ
2005 Ancestry and progeny of nutrient amino acid transporters. Proc Natl Acad Sci U S A 102 1360 1365
16. KeyhaniNO
RosemanS
1997 Wild-type Escherichia coli grows on the chitin disaccharide, N,N′-diacetylchitobiose, by expressing the cel operon. Proc Natl Acad Sci U S A 94 14367 14371
17. ReizerJ
ReizerA
SaierMHJr
1995 Novel phosphotransferase system genes revealed by bacterial genome analysis-a gene cluster encoding a unique Enzyme I and the proteins of a fructose-like permease system. Microbiology 141 961 971
18. WolfeAJ
2005 The acetate switch. Microbiol Mol Biol Rev 69 12 50
19. MortlockRP
BrubakerRR
1962 Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities of Pasteurella pestis and Pasteurella pseudotuberculosis. J Bacteriol 84 1122 1123
20. WhiteleyM
BageraMG
BumgarnerRE
ParsekMR
TeitzelGM
2001 Gene expression in Pseudomonas aeruginosa biofilms. Nature 413 860 864
21. WaiteRD
PaccanaroA
PapakonstantinopoulouA
HurstJM
SaqiM
2006 Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. BMC Genomics 7 162
22. SchembriMA
KjaergaardK
KlemmP
2003 Global gene expression in Escherichia coli biofilms. Mol Microbiol 48 253 267
23. BeloinC
ValleJ
Latour-LambertP
FaureP
KzreminskiM
2004 Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51 659 674
24. LazazzeraBA
2005 Lessons from DNA microarray analysis: the gene expression profile of biofilms. Curr Opin Microbiol 8 222 227
25. StewartPS
FranklinMJ
2008 Physiological heterogeneity in biofilms. Nat Rev Microbiol 6 199 210
26. PerryRD
BobrovAG
KirillinaO
JonesHA
PedersenL
2004 Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J Bacteriol 186 1638 1647
27. TorresAG
JeterC
LangleyW
MatthysseAG
2005 Differential binding of Escherichia coli O157:H7 to alfalfa, human epithelial cells, and plastic is mediated by a variety of surface structures. Appl Environ Microbiol 71 8008 8015
28. ValletI
OlsonJW
LoryS
LazdunskiA
FillouxA
2001 The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci U S A 98 6911 6916
29. SherlockO
VejborgRM
KlemmP
2005 The TibA adhesin/invasin from enterotoxigenic Escherichia coli is self recognizing and induces bacterial aggregation and biofilm formation. Infect Immun 73 1954 1963
30. PatelCN
WorthamBW
LinesJL
FetherstonJD
PerryRD
2006 Polyamines are essential for the formation of plague biofilm. J Bacteriol 188 2355 2363
31. VadyvalooV
JarrettC
SturdevantD
SebbaneF
HinnebuschBJ
2007 Analysis of Yersinia pestis gene expression in the flea vector. Adv Exp Med Biol 603 192 200
32. RebeilR
ErnstRK
JarrettCO
AdamsKN
MillerSI
2006 Characterization of late acyltransferase genes of Yersinia pestis and their role in temperature-dependent lipid A variation. J Bacteriol 188 1381 1388
33. SebbaneF
JarrettCO
GardnerD
LongD
HinnebuschBJ
2006 Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc Natl Acad Sci U S A 103 5526 5530
34. FormanS
WulffCR
Myers-MoralesT
CowanC
PerryRD
2008 yadBC of Yersinia pestis, a new virulence determinant for bubonic plague. Infect Immun 76 578 587
35. HuangX
LindlerLE
2004 The pH 6 antigen is an antiphagocytic factor produced by Yersinia pestis independent of Yersinia outer proteins and capsule antigen. Infect Immun 72 7212 7219
36. CathelynJS
CrosbySD
LathemWW
GoldmanWE
MillerVL
2006 RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci U S A 103 13514 13519
37. HerovenAK
DerschP
2006 RovM, a novel LysR-type regulator of the virulence activator gene rovA, controls cell invasion, virulence and motility of Yersinia pseudotuberculosis. Mol Microbiol 62 1469 1483
38. OystonPC
DorrellN
WilliamsK
LiSR
GreenM
2000 The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis. Infect Immun 68 3419 3425
39. GrabensteinJP
FukutoHS
PalmerLE
BliskaJB
2006 Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages. Infect Immun 74 3727 3741
40. Blanc-PotardAB
GroismanEA
1997 The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. Embo J 16 5376 5385
41. GroismanEA
KayserJ
SonciniFC
1997 Regulation of polymixin resistance and adaptation to low-Mg2+ environments. J Bacteriol 179 7040 7045
42. BaderMW
SanowarS
DaleyME
SchneiderAR
ChoU
2005 Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122 461 472
43. ProstLR
MillerSI
2008 The Salmonellae PhoQ sensor: mechanisms of detection of phagosome signals. Cell Microbiol 10 576 582
44. DimopoulusG
RichmanA
MüllerH-M
KafatosFC
1997 Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci U S A 94 11508 11513
45. LehaneMJ
WuD
LehaneSM
1997 Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc Natl Acad Sci U S A 94 11502 11507
46. ZhouD
HanY
QinL
ChenZ
QiuJ
2005 Transcriptome analysis of the Mg2+-responsive PhoP regulator in Yersinia pestis. FEMS Microbiol Lett 250 85 95
47. PerezJC
GroismanEA
2009 Transcription factor function and promoter architecture govern the evolution of bacterial regulons. Proc Natl Acad Sci U S A 106 4319 4324
48. MiyashiroT
GoulianM
2007 Stimulus-dependent differential regulation in the Escherichia coli PhoQ-PhoP system. Proc Natl Acad Sci U S A 104 16305 16310
49. EricksonDL
WaterfieldNR
VadyvalooV
LongD
FischerER
2007 Acute oral toxicity of Yersinia pseudotuberculosis to fleas: implications for the evolution of vector-borne transmission of plague. Cell Microbiol 9 2658 2666
50. GendlinaI
HeldKG
BartraSS
GallisBM
DoneanuCE
2007 Identification and type III-dependent secretion of the Yersinia pestis insecticidal-like proteins. Mol Microbiol 64 1214 1227
51. HaresMC
HinchliffeSJ
StrongPC
EleftherianosI
DowlingAJ
2008 The Yersinia pseudotuberculosis and Yersinia pestis toxin complex is active against cultured mammalian cells. Microbiology 154 3503 3517
52. LorangeEA
RaceBL
SebbaneF
HinnebuschBJ
2005 Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J Infect Dis 191 1907 1912
53. BurrowsTW
BaconGA
1956 The basis of virulence in Pasteurella pestis: the development of resistance to phagocytosis in vitro. Br J Exp Pathol 37 286 299
54. CavanaughDC
RandallR
1959 The role of multiplication of Pasteurella pestis in mononuclear phagocytes in the pathogenesis of flea-borne plague. J Immunol 83 348 363
55. EricksonDL
JarrettCO
CallisonJA
FischerER
HinnebuschBJ
2008 Loss of a biofilm-inhibiting glycosyl hydrolase during the emergence of Yersinia pestis. J Bacteriol 190 8163 8170
56. VuongC
VoyichJM
FischerER
BraughtonKR
WhitneyAR
2004 Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6 269 275
57. GalvánEM
LasaroMAS
SchifferliDM
2008 Capsular antigen Fraction 1 and Pla modulate the susceptibility of Yersinia pestis to pulmonary antimicrobial peptides such as cathelicidin. Infect Immun 76 1456 1464
58. SebbaneF
JarrettC
GardnerD
LongD
HinnebuschBJ
2009 The Yersinia pestis caf1M1A1 fimbrial capsule operon promotes transmission by flea bite in a mouse model of bubonic plague. Infect Immun 77 1222 1229
59. BosioCM
ElkinsKL
2001 Susceptibility to secondary Francisella tularensis live vaccine strain infection in B-cell-deficient mice is associated with neutrophilia but not with defects in specific T-cell-mediated immunity. Infect Immun 69 194 203
60. CelliJ
2008 Intracellular localization of Brucella abortus and Francisella tularensis in primary murine macrophages. Methods Mol Biol 431 133 145
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 2
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Caspase-1 Activation via Rho GTPases: A Common Theme in Mucosal Infections?
- Kaposi's Sarcoma Associated Herpes Virus (KSHV) Induced COX-2: A Key Factor in Latency, Inflammation, Angiogenesis, Cell Survival and Invasion
- IL-1β Processing in Host Defense: Beyond the Inflammasomes
- Reverse Genetics in Predicts ARF Cycling Is Essential for Drug Resistance and Virulence