#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Pathogen Entrapment by Transglutaminase—A Conserved Early Innate Immune Mechanism


Clotting systems are required in almost all animals to prevent loss of body fluids after injury. Here, we show that despite the risks associated with its systemic activation, clotting is a hitherto little appreciated branch of the immune system. We compared clotting of human blood and insect hemolymph to study the best-conserved component of clotting systems, namely the Drosophila enzyme transglutaminase and its vertebrate homologue Factor XIIIa. Using labelled artificial substrates we observe that transglutaminase activity from both Drosophila hemolymph and human blood accumulates on microbial surfaces, leading to their sequestration into the clot. Using both a human and a natural insect pathogen we provide functional proof for an immune function for transglutaminase (TG). Drosophila larvae with reduced TG levels show increased mortality after septic injury. The same larvae are also more susceptible to a natural infection involving entomopathogenic nematodes and their symbiotic bacteria while neither phagocytosis, phenoloxidase or—as previously shown—the Toll or imd pathway contribute to immunity. These results firmly establish the hemolymph/blood clot as an important effector of early innate immunity, which helps to prevent septic infections. These findings will help to guide further strategies to reduce the damaging effects of clotting and enhance its beneficial contribution to immune reactions.


Vyšlo v časopise: Pathogen Entrapment by Transglutaminase—A Conserved Early Innate Immune Mechanism. PLoS Pathog 6(2): e32767. doi:10.1371/journal.ppat.1000763
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000763

Souhrn

Clotting systems are required in almost all animals to prevent loss of body fluids after injury. Here, we show that despite the risks associated with its systemic activation, clotting is a hitherto little appreciated branch of the immune system. We compared clotting of human blood and insect hemolymph to study the best-conserved component of clotting systems, namely the Drosophila enzyme transglutaminase and its vertebrate homologue Factor XIIIa. Using labelled artificial substrates we observe that transglutaminase activity from both Drosophila hemolymph and human blood accumulates on microbial surfaces, leading to their sequestration into the clot. Using both a human and a natural insect pathogen we provide functional proof for an immune function for transglutaminase (TG). Drosophila larvae with reduced TG levels show increased mortality after septic injury. The same larvae are also more susceptible to a natural infection involving entomopathogenic nematodes and their symbiotic bacteria while neither phagocytosis, phenoloxidase or—as previously shown—the Toll or imd pathway contribute to immunity. These results firmly establish the hemolymph/blood clot as an important effector of early innate immunity, which helps to prevent septic infections. These findings will help to guide further strategies to reduce the damaging effects of clotting and enhance its beneficial contribution to immune reactions.


Zdroje

1. RittirschD

FlierlMA

WardPA

2008 Harmful molecular mechanisms in sepsis. Nat Rev Immunol 8 776 787

2. SunH

2006 The interaction between pathogens and the host coagulation system. Physiology (Bethesda) 21 281 288

3. RowleyAF

RatcliffeNA

1976 The granular cells of Galleria mellonella during clotting and phagocytic reactions in vitro. Tissue and Cell 8 437 446

4. BidlaG

LindgrenM

TheopoldU

DushayMS

2005 Hemolymph coagulation and phenoloxidase in Drosophila larvae. Dev Comp Immunol 29 669 679

5. ScherferC

QaziMR

TakahashiK

UedaR

DushayMS

2006 The Toll immune-regulated Drosophila protein Fondue is involved in hemolymph clotting and puparium formation. Dev Biol 295 156 163

6. HaineER

MoretY

Siva-JothyMT

RolffJ

2008 Antimicrobial defense and persistent infection in insects. Science 322 1257 1259

7. Ffrench-ConstantRH

EleftherianosI

ReynoldsSE

2007 A nematode symbiont sheds light on invertebrate immunity. Trends Parasitol 23 514 517

8. SchmidtO

TheopoldU

StrandM

2001 Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. Bioessays 23 344 351

9. KamimuraY

2007 Twin intromittent organs of Drosophila for traumatic insemination. Biol Lett 3 401 404

10. LorandL

GrahamRM

2003 Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4 140 156

11. TheopoldU

LiD

FabbriM

ScherferC

SchmidtO

2002 The coagulation of insect hemolymph. Cell Mol Life Sci 59 363 372

12. JiangY

DoolittleRF

2003 The evolution of vertebrate blood coagulation as viewed from a comparison of puffer fish and sea squirt genomes. Proc Natl Acad Sci U S A 100 7527 7532

13. KarlssonC

KorayemAM

ScherferC

LosevaO

DushayMS

2004 Proteomic analysis of the Drosophila larval hemolymph clot. J Biol Chem 279 52033 52041

14. LindgrenM

RiaziR

LeschC

WilhelmssonC

TheopoldU

2008 Fondue and transglutaminase in the Drosophila larval clot. J Insect Physiol 54 586 592

15. TheopoldU

SchmidtO

SöderhällK

DushayMS

2004 Coagulation in arthropods: defence, wound closure and healing. Trends Immunol 25 289 294

16. ScherferC

KarlssonC

LosevaO

BidlaG

GotoA

2004 Isolation and Characterization of Hemolymph Clotting Factors in Drosophila melanogaster by a Pullout Method. Curr Biol 14 625 629

17. MatsudaY

OsakiT

HashiiT

KoshibaT

KawabataS

2007 A cysteine-rich protein from an arthropod stabilizes clotting mesh and immobilizes bacteria at injury sites. J Biol Chem 282 33545 33552

18. LeschC

GotoA

LindgrenM

BidlaG

DushayMS

2007 A role for Hemolectin in coagulation and immunity in Drosophila melanogaster. Dev Comp Immunol 31 1255 1263

19. RämetM

LanotR

ZacharyD

ManfruelliP

2002 JNK signaling pathway is required for efficient wound healing in Drosophila. Dev Biol 241 145 156

20. HallemEA

RengarajanM

CicheTA

SternbergPW

2007 Nematodes, bacteria, and flies: a tripartite model for nematode parasitism. Curr Biol 17 898 904

21. Castillejo-LopezC

HäckerU

2005 The serine protease Sp7 is expressed in blood cells and regulates the melanization reaction in Drosophila. Biochem Biophys Res Commun 338 1075 1082

22. KocksC

ChoJH

NehmeN

UlvilaJ

PearsonAM

2005 Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123 335 346

23. EleftherianosI

BoundyS

JoyceSA

AslamS

MarshallJW

2007 An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci U S A 104 2419 2424

24. BeresfordPJ

Basinski-GrayJM

ChiuJK

ChadwickJS

AstonWP

1997 Characterization of hemolytic and cytotoxic Gallysins: a relationship with arylphorins. Dev Comp Immunol 21 253 266

25. FreitakD

WheatCW

HeckelDG

VogelH

2007 Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni. BMC Biol 5 56

26. ChenC

RowleyAF

NewtonRP

RatcliffeNA

1999 Identification, purification and properties of a beta-1,3-glucan-specific lectin from the serum of the cockroach, Blaberus discoidalis which is implicated in immune defence reactions. Comp Biochem Physiol B Biochem Mol Biol 122 309 319

27. RowleyAF

RatcliffeNA

1978 A histological study of wound healing and hemocyte function in the wax-moth Galleria mellonella. J Morph 157 181 200

28. AyresJS

SchneiderDS

2008 A signaling protease required for melanization in Drosophila affects resistance and tolerance of infections. PLoS Biol 6 e305 doi:10.1371/journal.pbio.0060305

29. DionneMS

SchneiderDS

2008 Models of infectious diseases in the fruit fly Drosophila melanogaster. Dis Model Mech 1 43 49

30. OpalSM

EsmonCT

2003 Bench-to-bedside review: functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Crit Care 7 23 38

31. SunH

RingdahlU

HomeisterJW

FayWP

EnglebergNC

2004 Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 305 1283 1286

32. RotsteinOD

1992 Role of fibrin deposition in the pathogenesis of intraabdominal infection. Eur J Clin Microbiol Infect Dis 11 1064 1068

33. LindqvistPG

DahlbäckB

2008 Carriership of Factor V Leiden and evolutionary selection advantage. Curr Med Chem 15 1541 1544

34. WeilerH

KerlinB

LytleMC

2004 Factor V Leiden polymorphism modifies sepsis outcome: evidence from animal studies. Crit Care Med 32 S233 238

35. LeclercV

PelteN

El ChamyL

MartinelliC

LigoxygakisP

2006 Prophenoloxidase activation is not required for survival to microbial infections in Drosophila. EMBO Rep 7 231 235

36. OehmckeS

MörgelinM

HerwaldH

2009 Activation of the Human Contact System on Neutrophil Extracellular Traps. J Innate Imm 1 225 230

37. BengtsonSH

SandénC

MörgelinM

MarxPF

OlinAI

2009 Activation of TAFI on the Surface of Streptococcus pyogenes Evokes Inflammatory Reactions by Modulating the Kallikrein/Kinin System. J Innate Immun 1 18 28

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#