Fis Is Essential for Capsule Production in and Regulates Expression of Other Important Virulence Factors
P.
multocida is the causative agent of a wide range of diseases of animals, including fowl cholera in poultry and wild birds. Fowl cholera isolates of P. multocida generally express a capsular polysaccharide composed of hyaluronic acid. There have been reports of spontaneous capsule loss in P. multocida, but the mechanism by which this occurs has not been determined. In this study, we identified three independent strains that had spontaneously lost the ability to produce capsular polysaccharide. Quantitative RT-PCR showed that these strains had significantly reduced transcription of the capsule biosynthetic genes, but DNA sequence analysis identified no mutations within the capsule biosynthetic locus. However, whole-genome sequencing of paired capsulated and acapsular strains identified a single point mutation within the fis gene in the acapsular strain. Sequencing of fis from two independently derived spontaneous acapsular strains showed that each contained a mutation within fis. Complementation of these strains with an intact copy of fis, predicted to encode a transcriptional regulator, returned capsule expression to all strains. Therefore, expression of a functional Fis protein is essential for capsule expression in P. multocida. DNA microarray analysis of one of the spontaneous fis mutants identified approximately 30 genes as down-regulated in the mutant, including pfhB_2, which encodes a filamentous hemagglutinin, a known P. multocida virulence factor, and plpE, which encodes the cross protective surface antigen PlpE. Therefore these experiments define for the first time a mechanism for spontaneous capsule loss in P. multocida and identify Fis as a critical regulator of capsule expression. Furthermore, Fis is involved in the regulation of a range of other P. multocida genes including important virulence factors.
Vyšlo v časopise:
Fis Is Essential for Capsule Production in and Regulates Expression of Other Important Virulence Factors. PLoS Pathog 6(2): e32767. doi:10.1371/journal.ppat.1000750
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000750
Souhrn
P.
multocida is the causative agent of a wide range of diseases of animals, including fowl cholera in poultry and wild birds. Fowl cholera isolates of P. multocida generally express a capsular polysaccharide composed of hyaluronic acid. There have been reports of spontaneous capsule loss in P. multocida, but the mechanism by which this occurs has not been determined. In this study, we identified three independent strains that had spontaneously lost the ability to produce capsular polysaccharide. Quantitative RT-PCR showed that these strains had significantly reduced transcription of the capsule biosynthetic genes, but DNA sequence analysis identified no mutations within the capsule biosynthetic locus. However, whole-genome sequencing of paired capsulated and acapsular strains identified a single point mutation within the fis gene in the acapsular strain. Sequencing of fis from two independently derived spontaneous acapsular strains showed that each contained a mutation within fis. Complementation of these strains with an intact copy of fis, predicted to encode a transcriptional regulator, returned capsule expression to all strains. Therefore, expression of a functional Fis protein is essential for capsule expression in P. multocida. DNA microarray analysis of one of the spontaneous fis mutants identified approximately 30 genes as down-regulated in the mutant, including pfhB_2, which encodes a filamentous hemagglutinin, a known P. multocida virulence factor, and plpE, which encodes the cross protective surface antigen PlpE. Therefore these experiments define for the first time a mechanism for spontaneous capsule loss in P. multocida and identify Fis as a critical regulator of capsule expression. Furthermore, Fis is involved in the regulation of a range of other P. multocida genes including important virulence factors.
Zdroje
1. CarterGR
ChengappaMM
Recommendations for a standard system of designating serotypes of Pasteurella multocida; 1981. 37 42 American Association of Veterinary Laboratory Diagnosticians
2. CifonelliJA
RebersPA
HeddlestonKL
1970 The isolation and characterisation of hyaluronic acid from Pasteurella multocida. Carbohydr Res 14 272 276
3. DeAngelisPL
GunayNS
ToidaT
MaoWJ
LinhardtRJ
2002 Identification of the capsular polysaccharides of Type D and F Pasteurella multocida as unmodified heparin and chondroitin, respectively. Carbohydr Res 337 1547 1552
4. MuniandyN
EdgarJ
WoolcockJB
MukkurTKS
Virulence, purification, structure, and protective potential of the putative capsular polysaccharide of Pasteurella multocida type 6:B.
PattenBE
SpencerTL
JohnsonRB, DH
LehaneL
Pasteurellosis in production animals; 1992 Bali, Indonesia 47 53
5. BoyceJD
ChungJY
AdlerB
2000 Genetic organisation of the capsule biosynthetic locus of Pasteurella multocida M1404 (B:2). Vet Microbiol 72 121 134
6. ChungJY
ZhangYM
AdlerB
1998 The capsule biosynthetic locus of Pasteurella multocida A-1. FEMS Microbiol Lett 166 289 296
7. TownsendKM
BoyceJD
ChungJY
FrostAJ
AdlerB
2001 Genetic organization of Pasteurella multocida cap loci and development of a multiplex capsular PCR typing system. J Clin Microbiol 39 924 929
8. ChungJY
WilkieI
BoyceJD
TownsendKM
FrostAJ
2001 Role of capsule in the pathogenesis of fowl cholera caused by Pasteurella multocida serogroup A. Infect Immun 69 2487 2492
9. BoyceJD
AdlerB
2000 The capsule is a virulence determinant in the pathogenesis of Pasteurella multocida M1404 (B:2). Infect Immun 68 3463 3468
10. HeddlestonKL
WatkoLP
RebersPA
1964 Dissociation of a fowl cholera strain of Pasteurella multocida. Avian Dis 8 649 657
11. ChamplinFR
PattersonCE
AustinFW
RyalsPE
1999 Derivation of extracellular polysaccharide-deficient variants from a serotype A strain of Pasteurella multocida. Curr Microbiol 38 268 272
12. WattJM
SwiatloE
WadeMM
ChamplinFR
2003 Regulation of capsule biosynthesis in serotype A strains of Pasteurella multocida. FEMS Microbiol Lett 225 9 14
13. GraingerDC
BusbySJ
2008 Global regulators of transcription in Escherichia coli: mechanisms of action and methods for study. Adv Appl Microbiol 65 93 113
14. BallCA
OsunaR
FergusonKC
JohnsonRC
1992 Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J Bacteriol 174 8043 8056
15. BradleyMD
BeachMB
de KoningAP
PrattTS
OsunaR
2007 Effects of Fis on Escherichia coli gene expression during different growth stages. Microbiol 153 2922 2940
16. NinnemannO
KochC
KahmannR
1992 The E. coli fis promoter is subject to stringent control and autoregulation. EMBO J 11 1075 1083
17. PanCQ
FinkelSE
CramtonSE
FengJA
SigmanDS
1996 Variable structures of Fis-DNA complexes determined by flanking DNA-protein contacts. J Mol Biol 264 675 695
18. ShaoY
Feldman-CohenLS
OsunaR
2008 Biochemical identification of base and phosphate contacts between Fis and a high-affinity DNA binding site. J Mol Biol 380 327 339
19. LenzDH
BasslerBL
2007 The small nucleoid protein Fis is involved in Vibrio cholerae quorum sensing. Mol Microbiol 63 859 871
20. LautierT
NasserW
2007 The DNA nucleoid-associated protein Fis co-ordinates the expression of the main virulence genes in the phytopathogenic bacterium Erwinia chrysanthemi. Mol Microbiol 66 1474 1490
21. SaldanaZ
Xicohtencati-CortesJ
AvelinoF
PhillipsAD
KaperJB
2009 Synergistic role of curli and cellullose in cell adherance and biofilm formation and attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli. Environ Micro 11 992 1006
22. GoldbergMD
JohnsonM
HintonJC
WilliamsPH
2001 Role of the nucleoid-associated protein Fis in the regulation of virulence properties of enteropathogenic Escherichia coli. Mol Microbiol 41 549 559
23. KellyA
GoldbergMD
CarrollRK
DaninoV
HintonJCD
2004 A global role for Fis in the transcriptional control of metabolism in Salmonella enterica serovar Typhimurium. Microbiol 150 2037 2053
24. HuntML
BoucherDJ
BoyceJD
AdlerB
2001 In vivo-expressed genes of Pasteurella multocida. Infect Immun 69 3004 3012
25. MayBJ
ZhangQ
LiLL
PaustianML
WhittamTS
2001 Complete genomic sequence of Pasteurella multocida, Pm70. Proc Natl Acad Sci USA 98 3460 3465
26. BishopAC
XuJ
JohnsonRC
SchimmelP
de Crecy-LagardV
2002 Identification of the tRNA-dihydrouridine synthase family. J Biol Chem 277 25090 25095
27. ChoBK
KnightEM
BarrettCL
PalssonBO
2008 Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts. Genome Res 18 900 910
28. WuJR
ShienJH
ShiehHK
ChenCF
ChangPC
2007 Protective immunity conferred by recombinant Pasteurella multocida lipoprotein E (PlpE). Vaccine 25 4140 4148
29. JacquesM
BelangerM
DiarraMS
DargisM
MalouinF
1994 Modulation of Pasteurella multocida capsular polysaccharide during growth under iron-restricted conditions and in vivo. Microbiol 140 263 270
30. MelnikowE
SchoenfeldC
SpehrV
WarrassR
GunkelN
2007 A compendium of antibiotic-induced transcription profiles reveals broad regulation of Pasteurella multocida virulence genes. Vet Microbiol 131 277 292
31. PaustianML
MayBJ
CaoD
BoleyD
KapurV
2002 Transcriptional response of Pasteurella multocida to defined iron sources. J Bacteriol 184 6714 6720
32. PaustianML
MayBJ
KapurV
2001 Pasteurella multocida gene expression in response to iron limitation. Infect Immun 69 4109 4115
33. JohnsonRC
BruistMF
SimonMI
1986 Host protein requirements for in vitro site-specific DNA inversion. Cell 46 531 539
34. KahmannR
RudtF
KochC
MertensG
1985 G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell 41 771 780
35. BeachMB
OsunaR
1998 Identification and characterization of the fis operon in enteric bacteria. J Bacteriol 180 5932 5946
36. SafoMK
YangW-Z
CorselliL
CramptonSE
YuanHS
1997 The transactivation region of the Fis protein that controls site-specific DNA inversion contrains extended mobile β-hairpin arms. EMBO J 16 6860 6873
37. KochC
NinnemannO
FussH
KahmannR
1991 The N-terminal part of the E.coli DNA binding protein FIS is essential for stimulating site-specific DNA inversion but is not required for specific DNA binding. Nucleic Acids Res 19 5915 5922
38. OsunaR
FinkelSE
JohnsonRC
1991 Identification of two functional regions in Fis: the N-terminus is required to promote Hin-mediated DNA inversion but not lambda excision. EMBO J 10 1593 1603
39. YuanHS
FinkelSE
FengJA
Kaczor-GrzeskowiakM
JohnsonRC
1991 The molecular structure of wild-type and mutant Fis protein: Relationship between mutational changes and recombinational enhancer function. Proc Natl Acad Sci U S A 88 9558 9562
40. TzouW-S
HwangM-J
1997 A model for Fis N-Terminus and Fis invertase recognition. FEBS Lett 401 1 5
41. TraversA
SchneiderR
MuskhelishviliG
2001 DNA supercoiling and transcription in Escherichia coli: The FIS connection. Biochimie 83 213 217
42. MallikP
PrattTS
BeachMB
BradleyMD
UndamatlaJ
2004 Growth phase-dependent regulation and stringent control of fis are conserved processes in enteric bacteria and involve a single promoter (fis P) in Escherichia coli. J Bacteriol 186 122 135
43. KraissA
SchlorS
ReidlJ
1998 In vivo transposon mutagenesis in Haemophilus influenzae. Appl Environ Microbiol 64 4697 4702
44. TatumFM
TabatabaiLB
BriggsRE
2009 Protection against fowl cholera conferred by vaccination with recombinant Pasteurella multocida filamentous hemagglutinin peptides. Avian Dis 53 169 174
45. ClockSA
PlanetPJ
PerezBA
FigurskiDH
2008 Outer membrane components of the Tad (Tight Adherence) secretion of Aggregatibacter actinomycetemcomitans. J Bacteriol 190 980 990
46. BoyceJD
CullenPA
NguyenV
WilkieI
AdlerB
2006 Analysis of the Pasteurella multocida outer membrane sub-proteome and its response to the in vivo environment of the natural host. Proteomics 6 870 880
47. TabatabaiLB
ZehrES
2004 Identification of five outer membrane-associated proteins among cross-protective factor proteins of Pasteurella multocida. Infect Immun 72 1195 1198
48. BoschM
GarridoE
LlagosteraM
de RozasAMP
BadiolaI
2002 Pasteurella multocida exbB, exbD and tonB genes are physically linked but independently transcribed. FEMS Microbiol Lett 210 201 208
49. TatumFM
YersinAG
BriggsRE
2005 Construction and virulence of a Pasteurella multocida fhaB2 mutant in turkeys. Microb Pathog 39 9 17
50. FullerTE
KennedyMJ
LoweryDE
2000 Identification of Pasteurella multocida virulence genes in a septicemic mouse model using signature-tagged mutagenesis. Microb Pathog 29 25 38
51. Jacob-DubuissonF
El-HamelC
SaintN
GuedinS
WilleryE
1999 Channel formation by FhaC, the outer membrane protein involved in the secretion of the Bordetella pertussis filamentous hemagglutinin. J Biol Chem 274 37731 37735
52. Labandeira-ReyM
MockJR
HansenEJ
2009 Regulation of expression of the Haemophilus ducreyi LspB and LspA2 proteins by CpxR. Infect Immun 77 3402 3411
53. ScarlatoV
AricoB
PrugnolaA
RappuoliR
1991 Sequential activation and environmental regulation of virulence genes in Bordetella pertussis. EMBO J 10 3971 3975
54. RyalsPE
NsoforMN
WattJM
ChamplinFR
1998 Relationship between serotype A encapsulation and a 40-kDa lipoprotein in Pasteurella multocida. Curr Microbiol 36 274 277
55. ChamplinFR
ShryockTR
PattersonCE
AustinFW
RyalsPE
2002 Prevalence of a novel capsule-associated lipoprotein among Pasteurellaceae pathogenic in animals. Curr Microbiol 44 297 301
56. BorrathybayE
SawadaT
KataokaY
OkiyamaE
KawamotoE
2003 Capsule thickness and amounts of a 39 kDa capsular protein of avian Pasteurella multocida type A strains correlate with their pathogenicity for chickens. Vet Microbiol 97 215 227
57. HarperM
BoyceJD
CoxAD
St MichaelF
WilkieIW
2007 Pasteurella multocida expresses two lipopolysaccharide glycoforms simultaneously, but only a single form is required for virulence: identification of two acceptor-specific heptosyl I transferases. Infect Immun 75 3885 3893
58. GentryJM
CorstvetRE
PancieraRJ
1982 Extraction of capsular material from Pasteurella haemolytica. Am J Vet Res 43 2070 2073
59. LloydAL
MarshallBJ
MeeBJ
2004 Identifying cloned Helicobacter pylori promoters by primer extension using a FAM-labelled primer and GeneScan® analysis. J Microb Methods 60 291 298
60. RumbleSM
LacrouteP
DalcaAV
FiumeM
SidowA
2009 SHRiMP: accurate mapping of short colour-space reads. PLoS Comput Biol 5 e1000386 doi:10.1371/journal.pcbi.1000386
61. ZerbinoDR
BirneyE
2008 Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18 821 829
62. HarperM
CoxA
St MichaelF
ParnasH
WilkieI
2007 Decoration of Pasteurella multocida lipopolysaccharide with phosphocholine is important for virulence. J Bacteriol 189 7384 7391
63. SmythGK
2004 Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3 Article 3
64. RitchieME
SilverJ
OshlackA
HolmesM
DiyagamaD
2007 A comparison of background correction methods for two-colour microarrays. Bioinformatics 23 2700 2707
65. BolstadBM
IrizarryRA
AstrandM
SpeedTP
2003 A comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinformatics 19 185 193
66. BenjaminiY
HochbergY
1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57 289 300
67. LaemmliUK
1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 680 685
68. AusubelFM
BrentR
KingstonRE
MooreDD
SeidmanJG
SmithJA
StruhlK
1995 Current protocols in molecular biology New York John Wiley & Sons, Inc
69. MillerVL
MekalanosJJ
1988 A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170 2575 2583
70. WilkieIW
GrimesSE
O'BoyleD
FrostAJ
2000 The virulence and protective efficacy for chickens of Pasteurella multocida administered by different routes. Vet Microbiol 72 57 68
71. HarperM
CoxAD
St MichaelF
WilkieIW
BoyceJD
2004 A heptosyltransferase mutant of Pasteurella multocida produces a truncated lipopolysaccharide structure and is attenuated in virulence. Infect Immun 72 3436 3443
72. HomchampaP
StrugnellRA
AdlerB
1997 Cross protective immunity conferred by a marker-free aroA mutant of Pasteurella multocida. Vaccine 15 203 208
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 2
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Caspase-1 Activation via Rho GTPases: A Common Theme in Mucosal Infections?
- Kaposi's Sarcoma Associated Herpes Virus (KSHV) Induced COX-2: A Key Factor in Latency, Inflammation, Angiogenesis, Cell Survival and Invasion
- IL-1β Processing in Host Defense: Beyond the Inflammasomes
- Reverse Genetics in Predicts ARF Cycling Is Essential for Drug Resistance and Virulence