#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Interaction of Rim101 and Protein Kinase A Regulates Capsule


Cryptococcus neoformans is a prevalent human fungal pathogen that must survive within various tissues in order to establish a human infection. We have identified the C. neoformans Rim101 transcription factor, a highly conserved pH-response regulator in many fungal species. The rim101Δ mutant strain displays growth defects similar to other fungal species in the presence of alkaline pH, increased salt concentrations, and iron limitation. However, the rim101Δ strain is also characterized by a striking defect in capsule, an important virulence-associated phenotype. This capsular defect is likely due to alterations in polysaccharide attachment to the cell surface, not in polysaccharide biosynthesis. In contrast to many other C. neoformans capsule-defective strains, the rim101Δ mutant is hypervirulent in animal models of cryptococcosis. Whereas Rim101 activation in other fungal species occurs through the conserved Rim pathway, we demonstrate that C. neoformans Rim101 is also activated by the cAMP/PKA pathway. We report here that C. neoformans uses PKA and the Rim pathway to regulate the localization, activation, and processing of the Rim101 transcription factor. We also demonstrate specific host-relevant activating conditions for Rim101 cleavage, showing that C. neoformans has co-opted conserved signaling pathways to respond to the specific niche within the infected host. These results establish a novel mechanism for Rim101 activation and the integration of two conserved signaling cascades in response to host environmental conditions.


Vyšlo v časopise: Interaction of Rim101 and Protein Kinase A Regulates Capsule. PLoS Pathog 6(2): e32767. doi:10.1371/journal.ppat.1000776
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000776

Souhrn

Cryptococcus neoformans is a prevalent human fungal pathogen that must survive within various tissues in order to establish a human infection. We have identified the C. neoformans Rim101 transcription factor, a highly conserved pH-response regulator in many fungal species. The rim101Δ mutant strain displays growth defects similar to other fungal species in the presence of alkaline pH, increased salt concentrations, and iron limitation. However, the rim101Δ strain is also characterized by a striking defect in capsule, an important virulence-associated phenotype. This capsular defect is likely due to alterations in polysaccharide attachment to the cell surface, not in polysaccharide biosynthesis. In contrast to many other C. neoformans capsule-defective strains, the rim101Δ mutant is hypervirulent in animal models of cryptococcosis. Whereas Rim101 activation in other fungal species occurs through the conserved Rim pathway, we demonstrate that C. neoformans Rim101 is also activated by the cAMP/PKA pathway. We report here that C. neoformans uses PKA and the Rim pathway to regulate the localization, activation, and processing of the Rim101 transcription factor. We also demonstrate specific host-relevant activating conditions for Rim101 cleavage, showing that C. neoformans has co-opted conserved signaling pathways to respond to the specific niche within the infected host. These results establish a novel mechanism for Rim101 activation and the integration of two conserved signaling cascades in response to host environmental conditions.


Zdroje

1. VartivarianSE

AnaissieEJ

CowartRE

SpriggHA

TinglerMJ

1993 Regulation of cryptococcal capsular polysaccharide by iron. J Infect Dis 167 186 190

2. Arechiga-CarvajalE

Ruiz-HerreraJ

2005 The RIM101/pacC Homologue from the Basidiomycete Ustilago maydis Is Functional in Multiple pH-Sensitive Phenomena. Eukaryotic Cell 4 999 1008

3. BensenE

MartinSJ

LiM

BermanJ

DAD

2004 Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiology 54 1335 1351

4. CastrejonF

GomezA

SanzM

DuranA

RonceroC

2006 The RIM101 Pathway Contributes to Yeast Cell Wall Assembly and Its Function Becomes Essential in the Absence of Mitogen-Activated Protein Kinase Slt2p. Eukaryotic Cell 5 507 517

5. DavisDA

2009 How human pathogenic fungi sense and adapt to pH: the link to virulence. Current Opinion in Microbiology 12 365 370

6. DavisD

WilsonRB

MitchellAP

2000 RIM101-Dependent and -Independent Pathways Govern pH Responses in Candida albicans. Mol Cell Biol 20 971 978

7. LambTM

MitchellAP

2003 The Transcription Factor Rim101p Governs Ion Tolerance and Cell Differentiation by Direct Repression of the Regulatory Genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23 677 686

8. LambT

XuW

DiamondA

MitchellAP

2001 Alkaline Response Genes of Saccharomyces cerevisiae and Their Relationship to the RIM101 Pathway. J Biol Chem 276 1850 1856

9. CaddickMX

BrownleeAG

ArstHN

1986 Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Molecular and General Genetics MGG 203 346 353

10. CornetM

RichardML

GaillardinC

2009 The homologue of the Saccharomyces cerevisiae RIM9 gene is required for ambient pH signalling in Candida albicans. Research in Microbiology 160 219 223

11. CornetM

BidardF

SchwarzP

Da CostaG

Blanchin-RolandS

DromerF

GaillardinC

2005 Deletions of Endocytic Components VPS28 and VPS32 Affect Growth at Alkaline pH and Virulence through both RIM101-Dependent and RIM101-Independent Pathways in Candida albicans. Infect Immun 73 7977 7987

12. SuSSY

MitchellAP

1993 Molecular characterization of the yeast meiotic regulatory gene RIM1. Nucl Acids Res 21 3789 3797

13. SuSSY

MitchellAP

1993 Identification of Functionally Related Genes That Stimulate Early Meiotic Gene Expression in Yeast. Genetics 133 67 77

14. BignellE

Negrete-UrtasunS

CalcagnoAM

HaynesK

ArstHNJr

2005 The Aspergillus pH-responsive transcription factor PacC regulates virulence. Molecular Microbiology 55 1072 1084

15. BaekY-U

MartinSJ

DavisDA

2006 Evidence for Novel pH-Dependent Regulation of Candida albicans Rim101, a Direct Transcriptional Repressor of the Cell Wall β-Glycosidase Phr2. Eukaryotic Cell 5 1550 1559

16. LiuH

2001 Transcriptional control of dimorphism in Candida albicans. Current Opinion in Microbiology 4 728 735

17. KullasAL

SamuelJMartin

DanaDavis

2007 Adaptation to environmental pH: integrating the Rim101 and calcineurin signal transduction pathways. Molecular Microbiology 66 858 871

18. NobileCJ

SolisN

MyersCL

FayAJ

DeneaultJ-S

2008 Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cellular Microbiology 10 2180 2196

19. VillarCC

KashlevaH

NobileCJ

MitchellAP

Dongari-BagtzoglouA

2007 Mucosal Tissue Invasion by Candida albicans Is Associated with E-Cadherin Degradation, Mediated by Transcription Factor Rim101p and Protease Sap5p. Infect Immun 75 2126 2135

20. EisendleM

ObereggerH

ButtingerR

IllmerP

HaasH

2004 Biosynthesis and Uptake of Siderophores Is Controlled by the PacC-Mediated Ambient-pH Regulatory System in Aspergillus nidulans. Eukaryotic Cell 3 561 563

21. EspesoEA

TilburnJ

ArstHNJr

PenalvaMA

1993 pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J 12 3947 3956

22. PeñalvaMA

TilburnJ

BignellE

ArstHNJr

2008 Ambient pH gene regulation in fungi: making connections. Trends in Microbiology 16 291 300

23. BaekY

LiM

DavisD

2008 Candida albicans Ferric Reductases Are Differentially Regulated in Response to Distinct Forms of Iron Limitation by the Rim101 and CBF Transcription Factors. Eukaryotic Cell 7 1168 1179

24. JungWH

KronstadJW

2008 Iron and fungal pathogenesis: a case study with Cryptococcus neoformans. Cellular Microbiology 10 277 284

25. LanC-Y

RodarteG

MurilloLA

JonesT

DavisRW

2004 Regulatory networks affected by iron availability in Candida albicans. Molecular Microbiology 53 1451 1469

26. TangenKL

JungWH

ShamAP

LianT

KronstadJW

2007 The iron- and cAMP-regulated gene SIT1 influences ferrioxamine B utilization, melanization and cell wall structure in Cryptococcus neoformans. Microbiology 153 29 41

27. RamonAM

FonziWA

2003 Diverged Binding Specificity of Rim101p, the Candida albicans Ortholog of PacC. Eukaryotic Cell 2 718 728

28. CoxGM

HarrisonTS

McDadeHC

TabordaCP

HeinrichG

2003 Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect Immun 71 173 180

29. NybergK

JohanssonU

JohanssonA

CamnerP

1992 Phagolysosomal pH in alveolar macrophages. Environ Health Perspect 97 149 152

30. MogensenEG

JanbonG

ChaloupkaJ

SteegbornC

FuMS

2006 Cryptococcus neoformans Senses CO2 through the Carbonic Anhydrase Can2 and the Adenylyl Cyclase Cac1. Eukaryotic Cell 5 103 111

31. GrangerDL

PerfectJR

DurackDT

1985 Virulence of Cryptococcus neoformans. Regulation of capsule synthesis by carbon dioxide. J Clin Invest 76 508 516

32. BahnY-S

KojimaK

CoxGM

HeitmanJ

2006 A Unique Fungal Two-Component System Regulates Stress Responses, Drug Sensitivity, Sexual Development, and Virulence of Cryptococcus neoformans. Mol Biol Cell 17 3122 3135

33. AlspaughJ

PerfectJ

HeitmanJ

1997 Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev 11 3206 3217

34. AlspaughJ

PerfectJR

HeitmanJ

1998 Signal Transduction Pathways Regulating Differentiation and Pathogenicity of Cryptococcus neoformans. Fungal Genetics and Biology 25 1 14

35. AlspaughJ

Pukkila-WorleyR

HarashimaT

CavalloLM

FunnellD

CoxGM

PerfectJR

KronstadJW

HeitmanJ

2002 Adenylyl Cyclase Functions Downstream of the Gα Protein Gpa1 and Controls Mating and Pathogenicity of Cryptococcus neoformans. Eukaryotic Cell 1 75 84

36. D'SouzaCA

AlspaughJA

YueC

HarashimaT

CoxGM

2001 Cyclic AMP-Dependent Protein Kinase Controls Virulence of the Fungal Pathogen Cryptococcus neoformans. Mol Cell Biol 21 3179 3191

37. CramerKL

GerraldQD

NicholsCB

PriceMS

AlspaughJA

2006 Transcription Factor Nrg1 Mediates Capsule Formation, Stress Response, and Pathogenesis in Cryptococcus neoformans. Eukaryotic Cell 5 1147 1156

38. Pukkila-WorleyR

GerraldQD

KrausPR

BoilyM-J

DavisMJ

2005 Transcriptional Network of Multiple Capsule and Melanin Genes Governed by the Cryptococcus neoformans Cyclic AMP Cascade. Eukaryotic Cell 4 190 201

39. LiuOW

ChunCD

ChowED

ChenC

MadhaniHD

2008 Systematic Genetic Analysis of Virulence in the Human Fungal Pathogen Cryptococcus neoformans. 135 174 188

40. BowersK

LottridgeJ

HelliwellSB

GoldthwaiteLM

LuzioJP

2004 Protein -Protein Interactions of ESCRT Complexes in the Yeast Saccharomyces cerevisiae. Traffic 5 194 210

41. Blanchin-RolandS

Da CostaG

GaillardinC

2008 Ambient pH signalling in the yeast Yarrowia lipolytica involves YlRim23p/PalC, which interacts with Snf7p/Vps32p, but does not require the long C terminus of YlRim9p/PalI. Microbiology 154 1668 1676

42. DiezE

AlvaroJ

EspesoEA

RainbowL

SuarezT

2002 Activation of the Aspergillus PacC zinc finger transcription factor requires two proteolytic steps. EMBO J 21 1350 1359

43. PenasMM

Hervas-AguilarA

Munera-HuertasT

ReoyoE

PenalvaMA

2007 Further Characterization of the Signaling Proteolysis Step in the Aspergillus nidulans pH Signal Transduction Pathway. Eukaryotic Cell 6 960 970

44. VincentO

RainbowL

TilburnJ

ArstHNJr

PenalvaMA

2003 YPXL/I Is a Protein Interaction Motif Recognized by Aspergillus PalA and Its Human Homologue, AIP1/Alix. Mol Cell Biol 23 1647 1655

45. XuW

MitchellAP

2001 Yeast PalA/AIP1/Alix Homolog Rim20p Associates with a PEST-Like Region and Is Required for Its Proteolytic Cleavage. J Bacteriol 183 6917 6923

46. YonedaA

DoeringTL

2006 A Eukaryotic Capsular Polysaccharide Is Synthesized Intracellularly and Secreted via Exocytosis. Mol Biol Cell 17 5131 5140

47. YonedaA

DoeringTL

2008 Regulation of Cryptococcus neoformans Capsule Size Is Mediated at the Polymer Level. Eukaryotic Cell 7 546 549

48. Garcia-RiveraJ

ChangYC

Kwon-ChungKJ

CasadevallA

2004 Cryptococcus neoformans CAP59 (or Cap59p) Is Involved in the Extracellular Trafficking of Capsular Glucuronoxylomannan. Eukaryotic Cell 3 385 392

49. ReeseAJ

DoeringTL

2003 Cell wall α1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Molecular Microbiology 50 1401 1409

50. ReeseAJ

YonedaA

BregerJA

LiuABH

GriffithCL

2007 Loss of cell wall α (1-3) glucan affects Cryptococcus neoformans from ultrastructure to virulence. Molecular Microbiology 63 1385 1398

51. DavisD

2003 Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Current Genetics 44 1 7

52. MingotJM

EspesoEA

DiezE

PenalvaMA

2001 Ambient pH Signaling Regulates Nuclear Localization of the Aspergillus nidulans PacC Transcription Factor. Mol Cell Biol 21 1688 1699

53. Hervis-AguilarA

RodriguezJM

TilburnJ

ArstHN

PenalvaMA

2007 Evidence for the Direct Involvement of the Proteasome in the Proteolytic Processing of the Aspergillus nidulans Zinc Finger Transcription Factor PacC. Journal of Biological Chemistry 282 34735 34747

54. OrejasM

EspesoEA

TilburnJ

SarkarS

ArstHN

1995 Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes & Development 9 1622 1632

55. GriffithCL

KluttsJS

ZhangL

LeverySB

DoeringTL

2004 UDP-glucose Dehydrogenase Plays Multiple Roles in the Biology of the Pathogenic Fungus Cryptococcus neoformans. J Biol Chem 279 51669 51676

56. MoyrandF

JanbonG

2004 UGD1, Encoding the Cryptococcus neoformans UDP-Glucose Dehydrogenase, Is Essential for Growth at 37°C and for Capsule Biosynthesis. Eukaryotic Cell 3 1601 1608

57. SommerU

LiuH

DoeringTL

2003 An α-1,3-mannosyltransferase of Cryptococcus neoformans. J Biol Chem M307223200

58. CottrellTR

GriffithCL

LiuH

NenningerAA

DoeringTL

2007 The Pathogenic Fungus Cryptococcus neoformans Expresses Two Functional GDP-Mannose Transporters with Distinct Expression Patterns and Roles in Capsule Synthesis. Eukaryotic Cell 6 776 785

59. WillsEA

RobertsIS

Del PoetaM

JohannaRivera

CasadevallA

2001 Identification and characterization of the Cryptococcus neoformans phosphomannose isomerase-encoding gene, MAN1, and its impact on pathogenicity. Molecular Microbiology 40 610 620

60. HuG

SteenBR

LianT

ShamAP

TamN

2007 Transcriptional Regulation by Protein Kinase A in Cryptococcus neoformans. PLoS Pathog 3 e42 doi:10.1371/journal.ppat.0030042

61. LianT

MeganISimmer

CletusAD'Souza

BarbaraRSteen

ScottDZuyderduyn

StevenJMJones

MarcoAMarra

JamesWKronstad

2005 Iron-regulated transcription and capsule formation in the fungal pathogen Cryptococcus neoformans. Molecular Microbiology 55 1452 1472

62. WatermanSR

HachamM

HuG

ZhuX

ParkYD

2007 Role of a CUF1/CTR4 copper regulatory axis in the virulence of Cryptococcus neoformans. J Clin Invest 117 794 802

63. JungWH

ShamA

WhiteR

KronstadJW

2006 Iron Regulation of the Major Virulence Factors in the AIDS-Associated Pathogen Cryptococcus neoformans. PLoS Biol 4 e410 doi:10.1371/journal.pbio.0040410

64. JungWH

ShamA

LianT

SinghA

KosmanDJ

2008 Iron Source Preference and Regulation of Iron Uptake in Cryptococcus neoformans. PLoS Pathog 4 e45 doi:10.1371/journal.ppat.0040045

65. TilburnJ

SarkarS

WiddickDA

EspesoEA

OrejasM

1995 The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14 779 790

66. ChangYC

Kwon-ChungKJ

1998 Isolation of the Third Capsule-Associated Gene, CAP60, Required for Virulence in Cryptococcus neoformans. Infect Immun 66 2230 2236

67. ChangYC

Kwon-ChungKJ

1999 Isolation, characterization, and localization of a capsule-associated gene, CAP10, of Cryptococcus neoformans. J Bacteriol 181 5636 5643

68. ChangYC

PenoyerLA

Kwon-ChungKJ

1996 The second capsule gene of Cryptococcus neoformans, CAP64, is essential for virulence. Infect Immun 64 1977 1983

69. WeinbergED

1999 The Role of Iron In Protozoan and Fungal Infectious Diseases. Journal of Eurkaryotic Microbiology 46 231 238

70. CoxGM

MukherjeeJ

ColeGT

CasadevallA

PerfectJR

2000 Urease as a Virulence Factor in Experimental Cryptococcosis. Infect Immun 68 443 448

71. BulmerG

SansMD

1968 Cryptococcus neoformans III. Inhibition of Phagocytosis. Journal of Bacteriology 95 5 8

72. PokholokDK

ZeitlingerJ

HannettNM

ReynoldsDB

YoungRA

2006 Activated Signal Transduction Kinases Frequently Occupy Target Genes. Science 313 533 536

73. IdnurmA

WaltonFJ

FloydA

ReedyJL

HeitmanJ

2009 Identification of ENA1 as a Virulence Gene of the Human Pathogenic Fungus Cryptococcus neoformans through Signature-Tagged Insertional Mutagenesis. Eukaryotic Cell 8 315 326

74. NybergK

JohanssonU

RundquistI

CamnerP

1989 Estimation of pH in individual alveolar macrophage phagolysosomes. Exp Lung Res 15 499 510

75. MonariC

BevilacquaS

PiccioniM

PericoliniE

PeritoS

2009 A Microbial Polysaccharide Reduces the Severity of Rheumatoid Arthritis by Influencing Th17 Differentiation and Proinflammatory Cytokines Production. J Immunol 183 191 200

76. GowN

NeteaM

MunroC

FerwerdaG

BatesS

2007 Immune Recognition of Candida albicans β-glucan by Dectin 1. The Journal of Infectious Diseases 196 1565 1571

77. NeteaMG

BrownGD

KullbergBJ

GowNAR

2008 An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Micro 6 67 78

78. HuangC

NongS-h

MansourMK

SpechtCA

LevitzSM

2002 Purification and Characterization of a Second Immunoreactive Mannoprotein from Cryptococcus neoformans That Stimulates T-Cell Responses. Infect Immun 70 5485 5493

79. LevitzSM

NongS-h

MansourMK

HuangC

SpechtCA

2001 Molecular characterization of a mannoprotein with homology to chitin deacetylases that stimulates T cell responses to Cryptococcus neoformans. Proceedings of the National Academy of Sciences of the United States of America 98 10422 10427

80. SambrookJ

FritschEF

ManiatisT

1989 Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY Cold Spring Harbor Laboratory Press

81. PitkinJW

PanaccioneDG

WaltonJD

1996 A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum. Microbiology 142 1557 1565

82. McDadeHC

CoxGM

2001 A new dominant selectable marker for use in Cryptococcus neoformans. Med Mycol 39 151 154

83. ToffalettiDL

RudeTH

JohnstonSA

DurackDT

PerfectJR

1993 Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol 175 1405 1411

84. FraserJA

SubaranRL

NicholsCB

HeitmanJ

2003 Recapitulation of the Sexual Cycle of the Primary Fungal Pathogen Cryptococcus neoformans var. gattii: Implications for an Outbreak on Vancouver Island, Canada. Eukaryotic Cell 2 1036 1045

85. GoinsCL

GerikKJ

LodgeJK

2006 Improvements to gene deletion in the fungal pathogen Cryptococcus neoformans: Absence of Ku proteins increases homologous recombination, and co-transformation of independent DNA molecules allows rapid complementation of deletion phenotypes. Fungal Genetics and Biology 43 531 544

86. IdnurmA

GilesSS

PerfectJR

HeitmanJ

2007 Peroxisome Function Regulates Growth on Glucose in the Basidiomycete Fungus Cryptococcus neoformans. Eukaryotic Cell 6 60 72

87. CasadevallA

CleareW

FeldmesserM

Glatman-FreedmanA

GoldmanDL

1998 Characterization of a Murine Monoclonal Antibody to Cryptococcus neoformans Polysaccharide That Is a Candidate for Human Therapeutic Studies. Antimicrob Agents Chemother 42 1437 1446

88. NicholsCB

FerreyraJ

BallouER

AlspaughJA

2009 Subcellular Localization Directs Signaling Specificity of the Cryptococcus neoformans Ras1 Protein. Eukaryotic Cell 8 181 189

89. PriceMS

NicholsCB

AlspaughJA

2008 The Cryptococcus neoformans Rho-GDP Dissociation Inhibitor Mediates Intracellular Survival and Virulence. Infect Immun 76 5729 5737

90. PerfectJR

LangS

DurackDT

1980 Chronic cryptococcal meningitis: a new experimental model in rabbits. Am J Pathol 101 177 194

91. HicksJK

BahnY-S

HeitmanJ

2005 Pde1 Phosphodiesterase Modulates Cyclic AMP Levels through a Protein Kinase A-Mediated Negative Feedback Loop in Cryptococcus neoformans. Eukaryotic Cell 4 1971 1981

92. ChangYC

Kwon-ChungKJ

1994 Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol 14 4912 4919

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#