Interaction of Rim101 and Protein Kinase A Regulates Capsule
Cryptococcus neoformans is a prevalent human fungal pathogen that must survive within various tissues in order to establish a human infection. We have identified the C. neoformans Rim101 transcription factor, a highly conserved pH-response regulator in many fungal species. The rim101Δ mutant strain displays growth defects similar to other fungal species in the presence of alkaline pH, increased salt concentrations, and iron limitation. However, the rim101Δ strain is also characterized by a striking defect in capsule, an important virulence-associated phenotype. This capsular defect is likely due to alterations in polysaccharide attachment to the cell surface, not in polysaccharide biosynthesis. In contrast to many other C. neoformans capsule-defective strains, the rim101Δ mutant is hypervirulent in animal models of cryptococcosis. Whereas Rim101 activation in other fungal species occurs through the conserved Rim pathway, we demonstrate that C. neoformans Rim101 is also activated by the cAMP/PKA pathway. We report here that C. neoformans uses PKA and the Rim pathway to regulate the localization, activation, and processing of the Rim101 transcription factor. We also demonstrate specific host-relevant activating conditions for Rim101 cleavage, showing that C. neoformans has co-opted conserved signaling pathways to respond to the specific niche within the infected host. These results establish a novel mechanism for Rim101 activation and the integration of two conserved signaling cascades in response to host environmental conditions.
Vyšlo v časopise:
Interaction of Rim101 and Protein Kinase A Regulates Capsule. PLoS Pathog 6(2): e32767. doi:10.1371/journal.ppat.1000776
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000776
Souhrn
Cryptococcus neoformans is a prevalent human fungal pathogen that must survive within various tissues in order to establish a human infection. We have identified the C. neoformans Rim101 transcription factor, a highly conserved pH-response regulator in many fungal species. The rim101Δ mutant strain displays growth defects similar to other fungal species in the presence of alkaline pH, increased salt concentrations, and iron limitation. However, the rim101Δ strain is also characterized by a striking defect in capsule, an important virulence-associated phenotype. This capsular defect is likely due to alterations in polysaccharide attachment to the cell surface, not in polysaccharide biosynthesis. In contrast to many other C. neoformans capsule-defective strains, the rim101Δ mutant is hypervirulent in animal models of cryptococcosis. Whereas Rim101 activation in other fungal species occurs through the conserved Rim pathway, we demonstrate that C. neoformans Rim101 is also activated by the cAMP/PKA pathway. We report here that C. neoformans uses PKA and the Rim pathway to regulate the localization, activation, and processing of the Rim101 transcription factor. We also demonstrate specific host-relevant activating conditions for Rim101 cleavage, showing that C. neoformans has co-opted conserved signaling pathways to respond to the specific niche within the infected host. These results establish a novel mechanism for Rim101 activation and the integration of two conserved signaling cascades in response to host environmental conditions.
Zdroje
1. VartivarianSE
AnaissieEJ
CowartRE
SpriggHA
TinglerMJ
1993 Regulation of cryptococcal capsular polysaccharide by iron. J Infect Dis 167 186 190
2. Arechiga-CarvajalE
Ruiz-HerreraJ
2005 The RIM101/pacC Homologue from the Basidiomycete Ustilago maydis Is Functional in Multiple pH-Sensitive Phenomena. Eukaryotic Cell 4 999 1008
3. BensenE
MartinSJ
LiM
BermanJ
DAD
2004 Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiology 54 1335 1351
4. CastrejonF
GomezA
SanzM
DuranA
RonceroC
2006 The RIM101 Pathway Contributes to Yeast Cell Wall Assembly and Its Function Becomes Essential in the Absence of Mitogen-Activated Protein Kinase Slt2p. Eukaryotic Cell 5 507 517
5. DavisDA
2009 How human pathogenic fungi sense and adapt to pH: the link to virulence. Current Opinion in Microbiology 12 365 370
6. DavisD
WilsonRB
MitchellAP
2000 RIM101-Dependent and -Independent Pathways Govern pH Responses in Candida albicans. Mol Cell Biol 20 971 978
7. LambTM
MitchellAP
2003 The Transcription Factor Rim101p Governs Ion Tolerance and Cell Differentiation by Direct Repression of the Regulatory Genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23 677 686
8. LambT
XuW
DiamondA
MitchellAP
2001 Alkaline Response Genes of Saccharomyces cerevisiae and Their Relationship to the RIM101 Pathway. J Biol Chem 276 1850 1856
9. CaddickMX
BrownleeAG
ArstHN
1986 Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Molecular and General Genetics MGG 203 346 353
10. CornetM
RichardML
GaillardinC
2009 The homologue of the Saccharomyces cerevisiae RIM9 gene is required for ambient pH signalling in Candida albicans. Research in Microbiology 160 219 223
11. CornetM
BidardF
SchwarzP
Da CostaG
Blanchin-RolandS
DromerF
GaillardinC
2005 Deletions of Endocytic Components VPS28 and VPS32 Affect Growth at Alkaline pH and Virulence through both RIM101-Dependent and RIM101-Independent Pathways in Candida albicans. Infect Immun 73 7977 7987
12. SuSSY
MitchellAP
1993 Molecular characterization of the yeast meiotic regulatory gene RIM1. Nucl Acids Res 21 3789 3797
13. SuSSY
MitchellAP
1993 Identification of Functionally Related Genes That Stimulate Early Meiotic Gene Expression in Yeast. Genetics 133 67 77
14. BignellE
Negrete-UrtasunS
CalcagnoAM
HaynesK
ArstHNJr
2005 The Aspergillus pH-responsive transcription factor PacC regulates virulence. Molecular Microbiology 55 1072 1084
15. BaekY-U
MartinSJ
DavisDA
2006 Evidence for Novel pH-Dependent Regulation of Candida albicans Rim101, a Direct Transcriptional Repressor of the Cell Wall β-Glycosidase Phr2. Eukaryotic Cell 5 1550 1559
16. LiuH
2001 Transcriptional control of dimorphism in Candida albicans. Current Opinion in Microbiology 4 728 735
17. KullasAL
SamuelJMartin
DanaDavis
2007 Adaptation to environmental pH: integrating the Rim101 and calcineurin signal transduction pathways. Molecular Microbiology 66 858 871
18. NobileCJ
SolisN
MyersCL
FayAJ
DeneaultJ-S
2008 Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cellular Microbiology 10 2180 2196
19. VillarCC
KashlevaH
NobileCJ
MitchellAP
Dongari-BagtzoglouA
2007 Mucosal Tissue Invasion by Candida albicans Is Associated with E-Cadherin Degradation, Mediated by Transcription Factor Rim101p and Protease Sap5p. Infect Immun 75 2126 2135
20. EisendleM
ObereggerH
ButtingerR
IllmerP
HaasH
2004 Biosynthesis and Uptake of Siderophores Is Controlled by the PacC-Mediated Ambient-pH Regulatory System in Aspergillus nidulans. Eukaryotic Cell 3 561 563
21. EspesoEA
TilburnJ
ArstHNJr
PenalvaMA
1993 pH regulation is a major determinant in expression of a fungal penicillin biosynthetic gene. EMBO J 12 3947 3956
22. PeñalvaMA
TilburnJ
BignellE
ArstHNJr
2008 Ambient pH gene regulation in fungi: making connections. Trends in Microbiology 16 291 300
23. BaekY
LiM
DavisD
2008 Candida albicans Ferric Reductases Are Differentially Regulated in Response to Distinct Forms of Iron Limitation by the Rim101 and CBF Transcription Factors. Eukaryotic Cell 7 1168 1179
24. JungWH
KronstadJW
2008 Iron and fungal pathogenesis: a case study with Cryptococcus neoformans. Cellular Microbiology 10 277 284
25. LanC-Y
RodarteG
MurilloLA
JonesT
DavisRW
2004 Regulatory networks affected by iron availability in Candida albicans. Molecular Microbiology 53 1451 1469
26. TangenKL
JungWH
ShamAP
LianT
KronstadJW
2007 The iron- and cAMP-regulated gene SIT1 influences ferrioxamine B utilization, melanization and cell wall structure in Cryptococcus neoformans. Microbiology 153 29 41
27. RamonAM
FonziWA
2003 Diverged Binding Specificity of Rim101p, the Candida albicans Ortholog of PacC. Eukaryotic Cell 2 718 728
28. CoxGM
HarrisonTS
McDadeHC
TabordaCP
HeinrichG
2003 Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect Immun 71 173 180
29. NybergK
JohanssonU
JohanssonA
CamnerP
1992 Phagolysosomal pH in alveolar macrophages. Environ Health Perspect 97 149 152
30. MogensenEG
JanbonG
ChaloupkaJ
SteegbornC
FuMS
2006 Cryptococcus neoformans Senses CO2 through the Carbonic Anhydrase Can2 and the Adenylyl Cyclase Cac1. Eukaryotic Cell 5 103 111
31. GrangerDL
PerfectJR
DurackDT
1985 Virulence of Cryptococcus neoformans. Regulation of capsule synthesis by carbon dioxide. J Clin Invest 76 508 516
32. BahnY-S
KojimaK
CoxGM
HeitmanJ
2006 A Unique Fungal Two-Component System Regulates Stress Responses, Drug Sensitivity, Sexual Development, and Virulence of Cryptococcus neoformans. Mol Biol Cell 17 3122 3135
33. AlspaughJ
PerfectJ
HeitmanJ
1997 Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev 11 3206 3217
34. AlspaughJ
PerfectJR
HeitmanJ
1998 Signal Transduction Pathways Regulating Differentiation and Pathogenicity of Cryptococcus neoformans. Fungal Genetics and Biology 25 1 14
35. AlspaughJ
Pukkila-WorleyR
HarashimaT
CavalloLM
FunnellD
CoxGM
PerfectJR
KronstadJW
HeitmanJ
2002 Adenylyl Cyclase Functions Downstream of the Gα Protein Gpa1 and Controls Mating and Pathogenicity of Cryptococcus neoformans. Eukaryotic Cell 1 75 84
36. D'SouzaCA
AlspaughJA
YueC
HarashimaT
CoxGM
2001 Cyclic AMP-Dependent Protein Kinase Controls Virulence of the Fungal Pathogen Cryptococcus neoformans. Mol Cell Biol 21 3179 3191
37. CramerKL
GerraldQD
NicholsCB
PriceMS
AlspaughJA
2006 Transcription Factor Nrg1 Mediates Capsule Formation, Stress Response, and Pathogenesis in Cryptococcus neoformans. Eukaryotic Cell 5 1147 1156
38. Pukkila-WorleyR
GerraldQD
KrausPR
BoilyM-J
DavisMJ
2005 Transcriptional Network of Multiple Capsule and Melanin Genes Governed by the Cryptococcus neoformans Cyclic AMP Cascade. Eukaryotic Cell 4 190 201
39. LiuOW
ChunCD
ChowED
ChenC
MadhaniHD
2008 Systematic Genetic Analysis of Virulence in the Human Fungal Pathogen Cryptococcus neoformans. 135 174 188
40. BowersK
LottridgeJ
HelliwellSB
GoldthwaiteLM
LuzioJP
2004 Protein -Protein Interactions of ESCRT Complexes in the Yeast Saccharomyces cerevisiae. Traffic 5 194 210
41. Blanchin-RolandS
Da CostaG
GaillardinC
2008 Ambient pH signalling in the yeast Yarrowia lipolytica involves YlRim23p/PalC, which interacts with Snf7p/Vps32p, but does not require the long C terminus of YlRim9p/PalI. Microbiology 154 1668 1676
42. DiezE
AlvaroJ
EspesoEA
RainbowL
SuarezT
2002 Activation of the Aspergillus PacC zinc finger transcription factor requires two proteolytic steps. EMBO J 21 1350 1359
43. PenasMM
Hervas-AguilarA
Munera-HuertasT
ReoyoE
PenalvaMA
2007 Further Characterization of the Signaling Proteolysis Step in the Aspergillus nidulans pH Signal Transduction Pathway. Eukaryotic Cell 6 960 970
44. VincentO
RainbowL
TilburnJ
ArstHNJr
PenalvaMA
2003 YPXL/I Is a Protein Interaction Motif Recognized by Aspergillus PalA and Its Human Homologue, AIP1/Alix. Mol Cell Biol 23 1647 1655
45. XuW
MitchellAP
2001 Yeast PalA/AIP1/Alix Homolog Rim20p Associates with a PEST-Like Region and Is Required for Its Proteolytic Cleavage. J Bacteriol 183 6917 6923
46. YonedaA
DoeringTL
2006 A Eukaryotic Capsular Polysaccharide Is Synthesized Intracellularly and Secreted via Exocytosis. Mol Biol Cell 17 5131 5140
47. YonedaA
DoeringTL
2008 Regulation of Cryptococcus neoformans Capsule Size Is Mediated at the Polymer Level. Eukaryotic Cell 7 546 549
48. Garcia-RiveraJ
ChangYC
Kwon-ChungKJ
CasadevallA
2004 Cryptococcus neoformans CAP59 (or Cap59p) Is Involved in the Extracellular Trafficking of Capsular Glucuronoxylomannan. Eukaryotic Cell 3 385 392
49. ReeseAJ
DoeringTL
2003 Cell wall α1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Molecular Microbiology 50 1401 1409
50. ReeseAJ
YonedaA
BregerJA
LiuABH
GriffithCL
2007 Loss of cell wall α (1-3) glucan affects Cryptococcus neoformans from ultrastructure to virulence. Molecular Microbiology 63 1385 1398
51. DavisD
2003 Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Current Genetics 44 1 7
52. MingotJM
EspesoEA
DiezE
PenalvaMA
2001 Ambient pH Signaling Regulates Nuclear Localization of the Aspergillus nidulans PacC Transcription Factor. Mol Cell Biol 21 1688 1699
53. Hervis-AguilarA
RodriguezJM
TilburnJ
ArstHN
PenalvaMA
2007 Evidence for the Direct Involvement of the Proteasome in the Proteolytic Processing of the Aspergillus nidulans Zinc Finger Transcription Factor PacC. Journal of Biological Chemistry 282 34735 34747
54. OrejasM
EspesoEA
TilburnJ
SarkarS
ArstHN
1995 Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes & Development 9 1622 1632
55. GriffithCL
KluttsJS
ZhangL
LeverySB
DoeringTL
2004 UDP-glucose Dehydrogenase Plays Multiple Roles in the Biology of the Pathogenic Fungus Cryptococcus neoformans. J Biol Chem 279 51669 51676
56. MoyrandF
JanbonG
2004 UGD1, Encoding the Cryptococcus neoformans UDP-Glucose Dehydrogenase, Is Essential for Growth at 37°C and for Capsule Biosynthesis. Eukaryotic Cell 3 1601 1608
57. SommerU
LiuH
DoeringTL
2003 An α-1,3-mannosyltransferase of Cryptococcus neoformans. J Biol Chem M307223200
58. CottrellTR
GriffithCL
LiuH
NenningerAA
DoeringTL
2007 The Pathogenic Fungus Cryptococcus neoformans Expresses Two Functional GDP-Mannose Transporters with Distinct Expression Patterns and Roles in Capsule Synthesis. Eukaryotic Cell 6 776 785
59. WillsEA
RobertsIS
Del PoetaM
JohannaRivera
CasadevallA
2001 Identification and characterization of the Cryptococcus neoformans phosphomannose isomerase-encoding gene, MAN1, and its impact on pathogenicity. Molecular Microbiology 40 610 620
60. HuG
SteenBR
LianT
ShamAP
TamN
2007 Transcriptional Regulation by Protein Kinase A in Cryptococcus neoformans. PLoS Pathog 3 e42 doi:10.1371/journal.ppat.0030042
61. LianT
MeganISimmer
CletusAD'Souza
BarbaraRSteen
ScottDZuyderduyn
StevenJMJones
MarcoAMarra
JamesWKronstad
2005 Iron-regulated transcription and capsule formation in the fungal pathogen Cryptococcus neoformans. Molecular Microbiology 55 1452 1472
62. WatermanSR
HachamM
HuG
ZhuX
ParkYD
2007 Role of a CUF1/CTR4 copper regulatory axis in the virulence of Cryptococcus neoformans. J Clin Invest 117 794 802
63. JungWH
ShamA
WhiteR
KronstadJW
2006 Iron Regulation of the Major Virulence Factors in the AIDS-Associated Pathogen Cryptococcus neoformans. PLoS Biol 4 e410 doi:10.1371/journal.pbio.0040410
64. JungWH
ShamA
LianT
SinghA
KosmanDJ
2008 Iron Source Preference and Regulation of Iron Uptake in Cryptococcus neoformans. PLoS Pathog 4 e45 doi:10.1371/journal.ppat.0040045
65. TilburnJ
SarkarS
WiddickDA
EspesoEA
OrejasM
1995 The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14 779 790
66. ChangYC
Kwon-ChungKJ
1998 Isolation of the Third Capsule-Associated Gene, CAP60, Required for Virulence in Cryptococcus neoformans. Infect Immun 66 2230 2236
67. ChangYC
Kwon-ChungKJ
1999 Isolation, characterization, and localization of a capsule-associated gene, CAP10, of Cryptococcus neoformans. J Bacteriol 181 5636 5643
68. ChangYC
PenoyerLA
Kwon-ChungKJ
1996 The second capsule gene of Cryptococcus neoformans, CAP64, is essential for virulence. Infect Immun 64 1977 1983
69. WeinbergED
1999 The Role of Iron In Protozoan and Fungal Infectious Diseases. Journal of Eurkaryotic Microbiology 46 231 238
70. CoxGM
MukherjeeJ
ColeGT
CasadevallA
PerfectJR
2000 Urease as a Virulence Factor in Experimental Cryptococcosis. Infect Immun 68 443 448
71. BulmerG
SansMD
1968 Cryptococcus neoformans III. Inhibition of Phagocytosis. Journal of Bacteriology 95 5 8
72. PokholokDK
ZeitlingerJ
HannettNM
ReynoldsDB
YoungRA
2006 Activated Signal Transduction Kinases Frequently Occupy Target Genes. Science 313 533 536
73. IdnurmA
WaltonFJ
FloydA
ReedyJL
HeitmanJ
2009 Identification of ENA1 as a Virulence Gene of the Human Pathogenic Fungus Cryptococcus neoformans through Signature-Tagged Insertional Mutagenesis. Eukaryotic Cell 8 315 326
74. NybergK
JohanssonU
RundquistI
CamnerP
1989 Estimation of pH in individual alveolar macrophage phagolysosomes. Exp Lung Res 15 499 510
75. MonariC
BevilacquaS
PiccioniM
PericoliniE
PeritoS
2009 A Microbial Polysaccharide Reduces the Severity of Rheumatoid Arthritis by Influencing Th17 Differentiation and Proinflammatory Cytokines Production. J Immunol 183 191 200
76. GowN
NeteaM
MunroC
FerwerdaG
BatesS
2007 Immune Recognition of Candida albicans β-glucan by Dectin 1. The Journal of Infectious Diseases 196 1565 1571
77. NeteaMG
BrownGD
KullbergBJ
GowNAR
2008 An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Micro 6 67 78
78. HuangC
NongS-h
MansourMK
SpechtCA
LevitzSM
2002 Purification and Characterization of a Second Immunoreactive Mannoprotein from Cryptococcus neoformans That Stimulates T-Cell Responses. Infect Immun 70 5485 5493
79. LevitzSM
NongS-h
MansourMK
HuangC
SpechtCA
2001 Molecular characterization of a mannoprotein with homology to chitin deacetylases that stimulates T cell responses to Cryptococcus neoformans. Proceedings of the National Academy of Sciences of the United States of America 98 10422 10427
80. SambrookJ
FritschEF
ManiatisT
1989 Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY Cold Spring Harbor Laboratory Press
81. PitkinJW
PanaccioneDG
WaltonJD
1996 A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum. Microbiology 142 1557 1565
82. McDadeHC
CoxGM
2001 A new dominant selectable marker for use in Cryptococcus neoformans. Med Mycol 39 151 154
83. ToffalettiDL
RudeTH
JohnstonSA
DurackDT
PerfectJR
1993 Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol 175 1405 1411
84. FraserJA
SubaranRL
NicholsCB
HeitmanJ
2003 Recapitulation of the Sexual Cycle of the Primary Fungal Pathogen Cryptococcus neoformans var. gattii: Implications for an Outbreak on Vancouver Island, Canada. Eukaryotic Cell 2 1036 1045
85. GoinsCL
GerikKJ
LodgeJK
2006 Improvements to gene deletion in the fungal pathogen Cryptococcus neoformans: Absence of Ku proteins increases homologous recombination, and co-transformation of independent DNA molecules allows rapid complementation of deletion phenotypes. Fungal Genetics and Biology 43 531 544
86. IdnurmA
GilesSS
PerfectJR
HeitmanJ
2007 Peroxisome Function Regulates Growth on Glucose in the Basidiomycete Fungus Cryptococcus neoformans. Eukaryotic Cell 6 60 72
87. CasadevallA
CleareW
FeldmesserM
Glatman-FreedmanA
GoldmanDL
1998 Characterization of a Murine Monoclonal Antibody to Cryptococcus neoformans Polysaccharide That Is a Candidate for Human Therapeutic Studies. Antimicrob Agents Chemother 42 1437 1446
88. NicholsCB
FerreyraJ
BallouER
AlspaughJA
2009 Subcellular Localization Directs Signaling Specificity of the Cryptococcus neoformans Ras1 Protein. Eukaryotic Cell 8 181 189
89. PriceMS
NicholsCB
AlspaughJA
2008 The Cryptococcus neoformans Rho-GDP Dissociation Inhibitor Mediates Intracellular Survival and Virulence. Infect Immun 76 5729 5737
90. PerfectJR
LangS
DurackDT
1980 Chronic cryptococcal meningitis: a new experimental model in rabbits. Am J Pathol 101 177 194
91. HicksJK
BahnY-S
HeitmanJ
2005 Pde1 Phosphodiesterase Modulates Cyclic AMP Levels through a Protein Kinase A-Mediated Negative Feedback Loop in Cryptococcus neoformans. Eukaryotic Cell 4 1971 1981
92. ChangYC
Kwon-ChungKJ
1994 Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol 14 4912 4919
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 2
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Caspase-1 Activation via Rho GTPases: A Common Theme in Mucosal Infections?
- Kaposi's Sarcoma Associated Herpes Virus (KSHV) Induced COX-2: A Key Factor in Latency, Inflammation, Angiogenesis, Cell Survival and Invasion
- IL-1β Processing in Host Defense: Beyond the Inflammasomes
- Reverse Genetics in Predicts ARF Cycling Is Essential for Drug Resistance and Virulence