#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Disulfide Bonds in Glycoprotein E2 of Hepatitis C Virus Reveal the Tertiary Organization of the Molecule


Hepatitis C virus (HCV), a major cause of chronic liver disease in humans, is the focus of intense research efforts worldwide. Yet structural data on the viral envelope glycoproteins E1 and E2 are scarce, in spite of their essential role in the viral life cycle. To obtain more information, we developed an efficient production system of recombinant E2 ectodomain (E2e), truncated immediately upstream its trans-membrane (TM) region, using Drosophila melanogaster cells. This system yields a majority of monomeric protein, which can be readily separated chromatographically from contaminating disulfide-linked aggregates. The isolated monomeric E2e reacts with a number of conformation-sensitive monoclonal antibodies, binds the soluble CD81 large external loop and efficiently inhibits infection of Huh7.5 cells by infectious HCV particles (HCVcc) in a dose-dependent manner, suggesting that it adopts a native conformation. These properties of E2e led us to experimentally determine the connectivity of its 9 disulfide bonds, which are strictly conserved across HCV genotypes. Furthermore, circular dichroism combined with infrared spectroscopy analyses revealed the secondary structure contents of E2e, indicating in particular about 28% β-sheet, in agreement with the consensus secondary structure predictions. The disulfide connectivity pattern, together with data on the CD81 binding site and reported E2 deletion mutants, enabled the threading of the E2e polypeptide chain onto the structural template of class II fusion proteins of related flavi- and alphaviruses. The resulting model of the tertiary organization of E2 gives key information on the antigenicity determinants of the virus, maps the receptor binding site to the interface of domains I and III, and provides insight into the nature of a putative fusogenic conformational change.


Vyšlo v časopise: The Disulfide Bonds in Glycoprotein E2 of Hepatitis C Virus Reveal the Tertiary Organization of the Molecule. PLoS Pathog 6(2): e32767. doi:10.1371/journal.ppat.1000762
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000762

Souhrn

Hepatitis C virus (HCV), a major cause of chronic liver disease in humans, is the focus of intense research efforts worldwide. Yet structural data on the viral envelope glycoproteins E1 and E2 are scarce, in spite of their essential role in the viral life cycle. To obtain more information, we developed an efficient production system of recombinant E2 ectodomain (E2e), truncated immediately upstream its trans-membrane (TM) region, using Drosophila melanogaster cells. This system yields a majority of monomeric protein, which can be readily separated chromatographically from contaminating disulfide-linked aggregates. The isolated monomeric E2e reacts with a number of conformation-sensitive monoclonal antibodies, binds the soluble CD81 large external loop and efficiently inhibits infection of Huh7.5 cells by infectious HCV particles (HCVcc) in a dose-dependent manner, suggesting that it adopts a native conformation. These properties of E2e led us to experimentally determine the connectivity of its 9 disulfide bonds, which are strictly conserved across HCV genotypes. Furthermore, circular dichroism combined with infrared spectroscopy analyses revealed the secondary structure contents of E2e, indicating in particular about 28% β-sheet, in agreement with the consensus secondary structure predictions. The disulfide connectivity pattern, together with data on the CD81 binding site and reported E2 deletion mutants, enabled the threading of the E2e polypeptide chain onto the structural template of class II fusion proteins of related flavi- and alphaviruses. The resulting model of the tertiary organization of E2 gives key information on the antigenicity determinants of the virus, maps the receptor binding site to the interface of domains I and III, and provides insight into the nature of a putative fusogenic conformational change.


Zdroje

1. ShepardCW

FinelliL

AlterMJ

2005 Global epidemiology of hepatitis C virus infection. Lancet Infect Dis 5 558 567

2. De FrancescoR

MigliaccioG

2005 Challenges and successes in developing new therapies for hepatitis C. Nature 436 953 960

3. LindenbachBD

ThielHJ

RiceCM

2007 Flaviviridae: The viruses and their replication. Fields Virology, Fifth edition 1101 1152

4. LavieM

GoffardA

DubuissonJ

2007 Assembly of a functional HCV glycoprotein heterodimer. Curr Issues Mol Biol 9 71 86

5. MerolaM

BrazzoliM

CocchiarellaF

HeileJM

HeleniusA

2001 Folding of hepatitis C virus E1 glycoprotein in a cell-free system. J Virol 75 11205 11217

6. PileriP

UematsuY

CampagnoliS

GalliG

FalugiF

1998 Binding of hepatitis C virus to CD81. Science 282 938 941

7. EvansMJ

von HahnT

TscherneDM

SyderAJ

PanisM

2007 Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446 801 805

8. MeertensL

BertauxC

CukiermanL

CormierE

LavilletteD

2008 The tight junction proteins claudin-1, -6, and -9 are entry cofactors for hepatitis C virus. J Virol 82 3555 3560

9. PlossA

EvansMJ

GaysinskayaVA

PanisM

YouH

2009 Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature

10. ScarselliE

AnsuiniH

CerinoR

RoccaseccaRM

AcaliS

2002 The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. Embo J 21 5017 5025

11. von HahnT

RiceCM

2008 Hepatitis C virus entry. J Biol Chem 283 3689 3693

12. LemonSM

WalkerCM

AlterMJ

YiMK

2007 Hepatitis C Virus. Fields Virology, Fifth edition 1253 1304

13. KatoN

OotsuyamaY

OhkoshiS

NakazawaT

SekiyaH

1992 Characterization of hypervariable regions in the putative envelope protein of hepatitis C virus. Biochem Biophys Res Commun 189 119 127

14. McCaffreyK

BooI

PoumbouriosP

DrummerHE

2007 Expression and characterization of a minimal hepatitis C virus glycoprotein E2 core domain that retains CD81 binding. J Virol 81 9584 9590

15. WeinerAJ

BrauerMJ

RosenblattJ

RichmanKH

TungJ

1991 Variable and hypervariable domains are found in the regions of HCV corresponding to the flavivirus envelope and NS1 proteins and the pestivirus envelope glycoproteins. Virology 180 842 848

16. KielianM

ReyFA

2006 Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 4 67 76

17. MukhopadhyayS

KuhnRJ

RossmannMG

2005 A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3 13 22

18. LescarJ

RousselA

WienMW

NavazaJ

FullerSD

2001 The Fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105 137 148

19. LorenzIC

AllisonSL

HeinzFX

HeleniusA

2002 Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J Virol 76 5480 5491

20. AnderssonH

BarthBU

EkstromM

GaroffH

1997 Oligomerization-dependent folding of the membrane fusion protein of Semliki Forest virus. J Virol 71 9654 9663

21. DubuissonJ

RiceCM

1996 Hepatitis C virus glycoprotein folding: disulfide bond formation and association with calnexin. J Virol 70 778 786

22. KielianM

2006 Class II virus membrane fusion proteins. Virology 344 38 47

23. StiasnyK

HeinzFX

2006 Flavivirus membrane fusion. J Gen Virol 87 2755 2766

24. BackovicM

JardetzkyTS

2009 Class III viral membrane fusion proteins. Curr Opin Struct Biol 19 189 196

25. WeissenhornW

HinzA

GaudinY

2007 Virus membrane fusion. FEBS Lett 581 2150 2155

26. YagnikAT

LahmA

MeolaA

RoccaseccaRM

ErcoleBB

2000 A model for the hepatitis C virus envelope glycoprotein E2. Proteins 40 355 366

27. FenouilletE

LavilletteD

LoureiroS

KrashiasG

MaurinG

2008 Contribution of redox status to hepatitis C virus E2 envelope protein function and antigenicity. J Biol Chem 283 26340 26348

28. FlintM

ThomasJM

MaidensCM

ShottonC

LevyS

1999 Functional analysis of cell surface-expressed hepatitis C virus E2 glycoprotein. J Virol 73 6782 6790

29. LavilletteD

PecheurEI

DonotP

FresquetJ

MolleJ

2007 Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus. J Virol 81 8752 8765

30. GarryRF

DashS

2003 Proteomics computational analyses suggest that hepatitis C virus E1 and pestivirus E2 envelope glycoproteins are truncated class II fusion proteins. Virology 307 255 265

31. HarrisonSC

2008 Viral membrane fusion. Nat Struct Mol Biol 15 690 698

32. IvyJ

NakanoE

ClementsD

1997 Methods of preparing carboxy-terminally truncated recombinant flavivirus envelope glycoproteins employing drosophila melanogaster expression systems

33. OwsiankaAM

TimmsJM

TarrAW

BrownRJ

HicklingTP

2006 Identification of conserved residues in the E2 envelope glycoprotein of the hepatitis C virus that are critical for CD81 binding. J Virol 80 8695 8704

34. DrummerHE

BooI

MaerzAL

PoumbouriosP

2006 A conserved Gly436-Trp-Leu-Ala-Gly-Leu-Phe-Tyr motif in hepatitis C virus glycoprotein E2 is a determinant of CD81 binding and viral entry. J Virol 80 7844 7853

35. LavilletteD

TarrAW

VoissetC

DonotP

BartoschB

2005 Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatology 41 265 274

36. HadlockKG

LanfordRE

PerkinsS

RoweJ

YangQ

2000 Human monoclonal antibodies that inhibit binding of hepatitis C virus E2 protein to CD81 and recognize conserved conformational epitopes. J Virol 74 10407 10416

37. KanaiR

KarK

AnthonyK

GouldLH

LedizetM

2006 Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 80 11000 11008

38. WhidbyJ

MateuG

ScarboroughH

DemelerB

GrakouiA

2009 Blocking hepatitis C virus infection with a recombinant form of envelope protein 2 ectodomain. J Virol

39. ModisY

OgataS

ClementsD

HarrisonSC

2005 Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79 1223 1231

40. GoormaghtighE

CabiauxV

RuysschaertJM

1994 Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. I. Assignments and model compounds. Subcell Biochem 23 329 362

41. DrummerHE

PoumbouriosP

2004 Hepatitis C virus glycoprotein E2 contains a membrane-proximal heptad repeat sequence that is essential for E1E2 glycoprotein heterodimerization and viral entry. J Biol Chem 279 30066 30072

42. FornsX

ThimmeR

GovindarajanS

EmersonSU

PurcellRH

2000 Hepatitis C virus lacking the hypervariable region 1 of the second envelope protein is infectious and causes acute resolving or persistent infection in chimpanzees. Proc Natl Acad Sci U S A 97 13318 13323

43. FalkowskaE

KajumoF

GarciaE

ReinusJ

DragicT

2007 Hepatitis C virus envelope glycoprotein E2 glycans modulate entry, CD81 binding, and neutralization. J Virol 81 8072 8079

44. GoffardA

CallensN

BartoschB

WychowskiC

CossetFL

2005 Role of N-linked glycans in the functions of hepatitis C virus envelope glycoproteins. J Virol 79 8400 8409

45. SkehelJJ

WileyDC

1998 Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95 871 874

46. LambRA

JardetzkyTS

2007 Structural basis of viral invasion: lessons from paramyxovirus F. Curr Opin Struct Biol 17 427 436

47. BartlamM

YangH

RaoZ

2005 Structural insights into SARS coronavirus proteins. Curr Opin Struct Biol 15 664 672

48. KingRD

SternbergMJ

1996 Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci 5 2298 2310

49. RousselA

LescarJ

VaneyMC

WenglerG

WenglerG

2006 Structure and interactions at the viral surface of the envelope protein E1 of Semliki Forest virus. Structure 14 75 86

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#