The Disulfide Bonds in Glycoprotein E2 of Hepatitis C Virus Reveal the Tertiary Organization of the Molecule
Hepatitis C virus (HCV), a major cause of chronic liver disease in humans, is the focus of intense research efforts worldwide. Yet structural data on the viral envelope glycoproteins E1 and E2 are scarce, in spite of their essential role in the viral life cycle. To obtain more information, we developed an efficient production system of recombinant E2 ectodomain (E2e), truncated immediately upstream its trans-membrane (TM) region, using Drosophila melanogaster cells. This system yields a majority of monomeric protein, which can be readily separated chromatographically from contaminating disulfide-linked aggregates. The isolated monomeric E2e reacts with a number of conformation-sensitive monoclonal antibodies, binds the soluble CD81 large external loop and efficiently inhibits infection of Huh7.5 cells by infectious HCV particles (HCVcc) in a dose-dependent manner, suggesting that it adopts a native conformation. These properties of E2e led us to experimentally determine the connectivity of its 9 disulfide bonds, which are strictly conserved across HCV genotypes. Furthermore, circular dichroism combined with infrared spectroscopy analyses revealed the secondary structure contents of E2e, indicating in particular about 28% β-sheet, in agreement with the consensus secondary structure predictions. The disulfide connectivity pattern, together with data on the CD81 binding site and reported E2 deletion mutants, enabled the threading of the E2e polypeptide chain onto the structural template of class II fusion proteins of related flavi- and alphaviruses. The resulting model of the tertiary organization of E2 gives key information on the antigenicity determinants of the virus, maps the receptor binding site to the interface of domains I and III, and provides insight into the nature of a putative fusogenic conformational change.
Vyšlo v časopise:
The Disulfide Bonds in Glycoprotein E2 of Hepatitis C Virus Reveal the Tertiary Organization of the Molecule. PLoS Pathog 6(2): e32767. doi:10.1371/journal.ppat.1000762
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000762
Souhrn
Hepatitis C virus (HCV), a major cause of chronic liver disease in humans, is the focus of intense research efforts worldwide. Yet structural data on the viral envelope glycoproteins E1 and E2 are scarce, in spite of their essential role in the viral life cycle. To obtain more information, we developed an efficient production system of recombinant E2 ectodomain (E2e), truncated immediately upstream its trans-membrane (TM) region, using Drosophila melanogaster cells. This system yields a majority of monomeric protein, which can be readily separated chromatographically from contaminating disulfide-linked aggregates. The isolated monomeric E2e reacts with a number of conformation-sensitive monoclonal antibodies, binds the soluble CD81 large external loop and efficiently inhibits infection of Huh7.5 cells by infectious HCV particles (HCVcc) in a dose-dependent manner, suggesting that it adopts a native conformation. These properties of E2e led us to experimentally determine the connectivity of its 9 disulfide bonds, which are strictly conserved across HCV genotypes. Furthermore, circular dichroism combined with infrared spectroscopy analyses revealed the secondary structure contents of E2e, indicating in particular about 28% β-sheet, in agreement with the consensus secondary structure predictions. The disulfide connectivity pattern, together with data on the CD81 binding site and reported E2 deletion mutants, enabled the threading of the E2e polypeptide chain onto the structural template of class II fusion proteins of related flavi- and alphaviruses. The resulting model of the tertiary organization of E2 gives key information on the antigenicity determinants of the virus, maps the receptor binding site to the interface of domains I and III, and provides insight into the nature of a putative fusogenic conformational change.
Zdroje
1. ShepardCW
FinelliL
AlterMJ
2005 Global epidemiology of hepatitis C virus infection. Lancet Infect Dis 5 558 567
2. De FrancescoR
MigliaccioG
2005 Challenges and successes in developing new therapies for hepatitis C. Nature 436 953 960
3. LindenbachBD
ThielHJ
RiceCM
2007 Flaviviridae: The viruses and their replication. Fields Virology, Fifth edition 1101 1152
4. LavieM
GoffardA
DubuissonJ
2007 Assembly of a functional HCV glycoprotein heterodimer. Curr Issues Mol Biol 9 71 86
5. MerolaM
BrazzoliM
CocchiarellaF
HeileJM
HeleniusA
2001 Folding of hepatitis C virus E1 glycoprotein in a cell-free system. J Virol 75 11205 11217
6. PileriP
UematsuY
CampagnoliS
GalliG
FalugiF
1998 Binding of hepatitis C virus to CD81. Science 282 938 941
7. EvansMJ
von HahnT
TscherneDM
SyderAJ
PanisM
2007 Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446 801 805
8. MeertensL
BertauxC
CukiermanL
CormierE
LavilletteD
2008 The tight junction proteins claudin-1, -6, and -9 are entry cofactors for hepatitis C virus. J Virol 82 3555 3560
9. PlossA
EvansMJ
GaysinskayaVA
PanisM
YouH
2009 Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature
10. ScarselliE
AnsuiniH
CerinoR
RoccaseccaRM
AcaliS
2002 The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. Embo J 21 5017 5025
11. von HahnT
RiceCM
2008 Hepatitis C virus entry. J Biol Chem 283 3689 3693
12. LemonSM
WalkerCM
AlterMJ
YiMK
2007 Hepatitis C Virus. Fields Virology, Fifth edition 1253 1304
13. KatoN
OotsuyamaY
OhkoshiS
NakazawaT
SekiyaH
1992 Characterization of hypervariable regions in the putative envelope protein of hepatitis C virus. Biochem Biophys Res Commun 189 119 127
14. McCaffreyK
BooI
PoumbouriosP
DrummerHE
2007 Expression and characterization of a minimal hepatitis C virus glycoprotein E2 core domain that retains CD81 binding. J Virol 81 9584 9590
15. WeinerAJ
BrauerMJ
RosenblattJ
RichmanKH
TungJ
1991 Variable and hypervariable domains are found in the regions of HCV corresponding to the flavivirus envelope and NS1 proteins and the pestivirus envelope glycoproteins. Virology 180 842 848
16. KielianM
ReyFA
2006 Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 4 67 76
17. MukhopadhyayS
KuhnRJ
RossmannMG
2005 A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3 13 22
18. LescarJ
RousselA
WienMW
NavazaJ
FullerSD
2001 The Fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105 137 148
19. LorenzIC
AllisonSL
HeinzFX
HeleniusA
2002 Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J Virol 76 5480 5491
20. AnderssonH
BarthBU
EkstromM
GaroffH
1997 Oligomerization-dependent folding of the membrane fusion protein of Semliki Forest virus. J Virol 71 9654 9663
21. DubuissonJ
RiceCM
1996 Hepatitis C virus glycoprotein folding: disulfide bond formation and association with calnexin. J Virol 70 778 786
22. KielianM
2006 Class II virus membrane fusion proteins. Virology 344 38 47
23. StiasnyK
HeinzFX
2006 Flavivirus membrane fusion. J Gen Virol 87 2755 2766
24. BackovicM
JardetzkyTS
2009 Class III viral membrane fusion proteins. Curr Opin Struct Biol 19 189 196
25. WeissenhornW
HinzA
GaudinY
2007 Virus membrane fusion. FEBS Lett 581 2150 2155
26. YagnikAT
LahmA
MeolaA
RoccaseccaRM
ErcoleBB
2000 A model for the hepatitis C virus envelope glycoprotein E2. Proteins 40 355 366
27. FenouilletE
LavilletteD
LoureiroS
KrashiasG
MaurinG
2008 Contribution of redox status to hepatitis C virus E2 envelope protein function and antigenicity. J Biol Chem 283 26340 26348
28. FlintM
ThomasJM
MaidensCM
ShottonC
LevyS
1999 Functional analysis of cell surface-expressed hepatitis C virus E2 glycoprotein. J Virol 73 6782 6790
29. LavilletteD
PecheurEI
DonotP
FresquetJ
MolleJ
2007 Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus. J Virol 81 8752 8765
30. GarryRF
DashS
2003 Proteomics computational analyses suggest that hepatitis C virus E1 and pestivirus E2 envelope glycoproteins are truncated class II fusion proteins. Virology 307 255 265
31. HarrisonSC
2008 Viral membrane fusion. Nat Struct Mol Biol 15 690 698
32. IvyJ
NakanoE
ClementsD
1997 Methods of preparing carboxy-terminally truncated recombinant flavivirus envelope glycoproteins employing drosophila melanogaster expression systems
33. OwsiankaAM
TimmsJM
TarrAW
BrownRJ
HicklingTP
2006 Identification of conserved residues in the E2 envelope glycoprotein of the hepatitis C virus that are critical for CD81 binding. J Virol 80 8695 8704
34. DrummerHE
BooI
MaerzAL
PoumbouriosP
2006 A conserved Gly436-Trp-Leu-Ala-Gly-Leu-Phe-Tyr motif in hepatitis C virus glycoprotein E2 is a determinant of CD81 binding and viral entry. J Virol 80 7844 7853
35. LavilletteD
TarrAW
VoissetC
DonotP
BartoschB
2005 Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatology 41 265 274
36. HadlockKG
LanfordRE
PerkinsS
RoweJ
YangQ
2000 Human monoclonal antibodies that inhibit binding of hepatitis C virus E2 protein to CD81 and recognize conserved conformational epitopes. J Virol 74 10407 10416
37. KanaiR
KarK
AnthonyK
GouldLH
LedizetM
2006 Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 80 11000 11008
38. WhidbyJ
MateuG
ScarboroughH
DemelerB
GrakouiA
2009 Blocking hepatitis C virus infection with a recombinant form of envelope protein 2 ectodomain. J Virol
39. ModisY
OgataS
ClementsD
HarrisonSC
2005 Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol 79 1223 1231
40. GoormaghtighE
CabiauxV
RuysschaertJM
1994 Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. I. Assignments and model compounds. Subcell Biochem 23 329 362
41. DrummerHE
PoumbouriosP
2004 Hepatitis C virus glycoprotein E2 contains a membrane-proximal heptad repeat sequence that is essential for E1E2 glycoprotein heterodimerization and viral entry. J Biol Chem 279 30066 30072
42. FornsX
ThimmeR
GovindarajanS
EmersonSU
PurcellRH
2000 Hepatitis C virus lacking the hypervariable region 1 of the second envelope protein is infectious and causes acute resolving or persistent infection in chimpanzees. Proc Natl Acad Sci U S A 97 13318 13323
43. FalkowskaE
KajumoF
GarciaE
ReinusJ
DragicT
2007 Hepatitis C virus envelope glycoprotein E2 glycans modulate entry, CD81 binding, and neutralization. J Virol 81 8072 8079
44. GoffardA
CallensN
BartoschB
WychowskiC
CossetFL
2005 Role of N-linked glycans in the functions of hepatitis C virus envelope glycoproteins. J Virol 79 8400 8409
45. SkehelJJ
WileyDC
1998 Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95 871 874
46. LambRA
JardetzkyTS
2007 Structural basis of viral invasion: lessons from paramyxovirus F. Curr Opin Struct Biol 17 427 436
47. BartlamM
YangH
RaoZ
2005 Structural insights into SARS coronavirus proteins. Curr Opin Struct Biol 15 664 672
48. KingRD
SternbergMJ
1996 Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci 5 2298 2310
49. RousselA
LescarJ
VaneyMC
WenglerG
WenglerG
2006 Structure and interactions at the viral surface of the envelope protein E1 of Semliki Forest virus. Structure 14 75 86
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 2
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Caspase-1 Activation via Rho GTPases: A Common Theme in Mucosal Infections?
- Kaposi's Sarcoma Associated Herpes Virus (KSHV) Induced COX-2: A Key Factor in Latency, Inflammation, Angiogenesis, Cell Survival and Invasion
- IL-1β Processing in Host Defense: Beyond the Inflammasomes
- Reverse Genetics in Predicts ARF Cycling Is Essential for Drug Resistance and Virulence