Effect of Neuraminidase Inhibitor–Resistant Mutations on Pathogenicity of Clade 2.2 A/Turkey/15/06 (H5N1) Influenza Virus in Ferrets
The acquisition of neuraminidase (NA) inhibitor resistance by H5N1 influenza viruses has serious clinical implications, as this class of drugs can be an essential component of pandemic control measures. The continuous evolution of the highly pathogenic H5N1 influenza viruses results in the emergence of natural NA gene variations whose impact on viral fitness and NA inhibitor susceptibility are poorly defined. We generated seven genetically stable recombinant clade 2.2 A/Turkey/15/06-like (H5N1) influenza viruses carrying NA mutations located either in the framework residues (E119A, H274Y, N294S) or in close proximity to the NA enzyme active site (V116A, I117V, K150N, Y252H). NA enzyme inhibition assays showed that NA mutations at positions 116, 117, 274, and 294 reduced susceptibility to oseltamivir carboxylate (IC50s increased 5- to 940-fold). Importantly, the E119A NA mutation (previously reported to confer resistance in the N2 NA subtype) was stable in the clade 2.2 H5N1 virus background and induced cross-resistance to oseltamivir carboxylate and zanamivir. We demonstrated that Y252H NA mutation contributed for decreased susceptibility of clade 2.2 H5N1 viruses to oseltamivir carboxylate as compared to clade 1 viruses. The enzyme kinetic parameters (Vmax, Km and Ki) of the avian-like N1 NA glycoproteins were highly consistent with their IC50 values. None of the recombinant H5N1 viruses had attenuated virulence in ferrets inoculated with 106 EID50 dose. Most infected ferrets showed mild clinical disease signs that differed in duration. However, H5N1 viruses carrying the E119A or the N294S NA mutation were lethal to 1 of 3 inoculated animals and were associated with significantly higher virus titers (P<0.01) and inflammation in the lungs compared to the wild-type virus. Our results suggest that highly pathogenic H5N1 variants carrying mutations within the NA active site that decrease susceptibility to NA inhibitors may possess increased virulence in mammalian hosts compared to drug-sensitive viruses. There is a need for novel anti-influenza drugs that target different virus/host factors and can limit the emergence of resistance.
Vyšlo v časopise:
Effect of Neuraminidase Inhibitor–Resistant Mutations on Pathogenicity of Clade 2.2 A/Turkey/15/06 (H5N1) Influenza Virus in Ferrets. PLoS Pathog 6(5): e32767. doi:10.1371/journal.ppat.1000933
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000933
Souhrn
The acquisition of neuraminidase (NA) inhibitor resistance by H5N1 influenza viruses has serious clinical implications, as this class of drugs can be an essential component of pandemic control measures. The continuous evolution of the highly pathogenic H5N1 influenza viruses results in the emergence of natural NA gene variations whose impact on viral fitness and NA inhibitor susceptibility are poorly defined. We generated seven genetically stable recombinant clade 2.2 A/Turkey/15/06-like (H5N1) influenza viruses carrying NA mutations located either in the framework residues (E119A, H274Y, N294S) or in close proximity to the NA enzyme active site (V116A, I117V, K150N, Y252H). NA enzyme inhibition assays showed that NA mutations at positions 116, 117, 274, and 294 reduced susceptibility to oseltamivir carboxylate (IC50s increased 5- to 940-fold). Importantly, the E119A NA mutation (previously reported to confer resistance in the N2 NA subtype) was stable in the clade 2.2 H5N1 virus background and induced cross-resistance to oseltamivir carboxylate and zanamivir. We demonstrated that Y252H NA mutation contributed for decreased susceptibility of clade 2.2 H5N1 viruses to oseltamivir carboxylate as compared to clade 1 viruses. The enzyme kinetic parameters (Vmax, Km and Ki) of the avian-like N1 NA glycoproteins were highly consistent with their IC50 values. None of the recombinant H5N1 viruses had attenuated virulence in ferrets inoculated with 106 EID50 dose. Most infected ferrets showed mild clinical disease signs that differed in duration. However, H5N1 viruses carrying the E119A or the N294S NA mutation were lethal to 1 of 3 inoculated animals and were associated with significantly higher virus titers (P<0.01) and inflammation in the lungs compared to the wild-type virus. Our results suggest that highly pathogenic H5N1 variants carrying mutations within the NA active site that decrease susceptibility to NA inhibitors may possess increased virulence in mammalian hosts compared to drug-sensitive viruses. There is a need for novel anti-influenza drugs that target different virus/host factors and can limit the emergence of resistance.
Zdroje
1. World Health Organization 2010 Cumulative number of confirmed human cases of avian influenza A/(H5N1) reported to WHO. World Health Organization. Available: http://www.who.int/csr/disease/avian_influenza/country/cases_table_2010_03_04/en/index.html. Accessed March 8 2010.
2. WebsterRG
GovorkovaEA
2006 H5N1 influenza – continuing evolution and spread. N Engl J Med 355 2174 2177
3. Abdel-GhafarAN
ChotpitayasunondhT
GaoZ
HaydenFG
NguyenDH
2008 Update on avian influenza A (H5N1) virus infection in humans. N Engl J Med 358 261 273
4. StephensonI
NicholsonKG
WoodJM
ZambonMC
KatzJM
2004 Confronting the avian influenza target: vaccine development for a potential pandemic. Lancet Infect Dis 4 499 509
5. MosconaA
2008 Medical management of influenza infection. Annul Rev Med 59 397 413
6. von ItzsteinM
WuWY
KokGB
PeggMS
DyasonJC
1993 Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363 418 423
7. LiW
EscarpePA
EisenbergEJ
CundyKC
SweetC
1998 Identification of GS 4104 as an orally bioavailable prodrug of the influenza virus neuraminidase inhibitor GS 4071. Antimicrob Agents Chemother 42 647 653
8. YenHL
MontoAS
WebsterRG
GovorkovaEA
2005 Virulence may determine the necessary duration and dosage of oseltamivir treatment for highly pathogenic A/Vietnam/1203/04 influenza virus in mice. J Infect Dis 192 665 672
9. IlyushinaNA
HayA
YilmazN
BoonAC
WebsterRG
2008 Oseltamivir-ribavirin combination therapy for highly pathogenic H5N1 influenza virus infection in mice. Antimicrob Agents Chemother 52 3889 3897
10. GovorkovaEA
IlyushinaNA
BoltzDA
DouglasA
YilmazN
2007 Efficacy of oseltamivir therapy in ferrets inoculated with different clades of H5N1 influenza virus. Antimicrob Agents Chemother 51 1414 1424
11. McKimm-BreschkinJL
SelleckPW
UsmanTB
JohnsonMA
2007 Reduced sensitivity of influenza A (H5N1) to osletamivir. Emerg Inf Dis 13 1354 1357
12. HurtAC
SelleckP
KomadinaN
ShawR
BrownL
2007 Susceptibility of highly pathogenic A (H5N1) avian influenza viruses to the neuraminidase inhibitors and adamantanes. Antivir Res 73 228 231
13. GovorkovaEA
IlyushinaNA
McClarenJL
NaiposposTS
DouangngeunB
2009 Susceptibility of highly pathogenic H5N1 influenza viruses to the neuraminidase inhibitor osletamivir differs in vitro and in mouse model. Antimicrob Agents Chemother 53 3088 3096
14. AokiFY
BoivinG
RobertsNA
2007 Influenza virus susceptibility and resistance to oseltamivir. Antiv Therapy 12 603 616
15. McKimm-BreschkinJL
2002 Neuraminidase inhibitors for the treatment and prevention of influenza. Expert Opin Pharmacother 3 103 112
16. HurtAC
HolienJK
ParkerM
KelsoA
BarrIG
2009 Zanamivir-resistant influenza viruses with a novel neuraminidase mutation. J Virol 83 10366 10373
17. McKimm-BreschkinJ
TriverdiT
HampsonA
HayA
KlimovA
2003 Neuraminidase sequence analysis and susceptibilities of influenza virus clinical isolates to zanamivir and oseltamivir. Antimicrob Agents Chemother 47 2264 2272
18. Rameix-WeltiMA
AgouF
BuchyP
MardyS
AubinJT
2006 Natural variation can significantly alter the sensitivity of influenza A (H5N1) viruses to oseltamivir. Antimicrob Agents Chemother 50 3809 3815
19. DeydeVM
NguyenT
BrightRA
BalishA
ShuB
2010 Detection of molecular markers of antiviral resistance in influenza A (H5N1) viruses using pyrosequencing method. Antimicrob Agents Chemother 54 1102 1110
20. CarrJ
IvesJ
KellyL
LambkinR
OxfordJ
2002 Influenza virus carrying neuraminidase with reduced sensitivity to oseltamivir carboxylate has altered properties in vitro and is compromised for infectivity and replicative ability in vivo. Antivir Res 54 79 88
21. IvesJAL
CarrJA
MendelDB
TaiCY
LambkinR
2002 The H274Y mutation in the influenza A/H1N1 neuraminidase active site following oseltamivir phosphate treatment leaves virus severely compromised both in vitro and in vivo. Antivir Res 55 307 317
22. ColacinoJM
ChirgadzeNY
GarmanE
MurtiKG
LoncharichRJ
1997 A single sequence change destabilizes the influenza virus neuraminidase tetramer. Virology 236 66 75
23. LeQM
KisoM
SomeyaK
SakaiYT
NguyenTH
2005 Avian flu: isolation of drug-resistant H5N1 virus. Nature 437 1108
24. YenHL
IlyushinaNA
SalomonR
HoffmannE
WebsterRG
2007 Neuraminidase inhibitor-resistant recombinant A/Vietnam/1203/04 (H5N1) influenza viruses retain their replication efficiency and pathogenicity in vitro and in vivo. J Virol 81 12418 12426
25. de JongMD
TranTT
TruongHK
VoMH
SmithGJ
2005 Oseltamivir resistance during treatment of influenza A (H5N1) infection. N Engl J Med 353 2667 2672
26. SaadMD
BoyntonBR
EarhartKC
MansourMM
NimanHL
2007 Detection of oseltamivir resistanct mutation N294S in humans with influenza A H5N1. Options for the Control of Influenza VI Conference. Toronto, Canada
27. LackenbyA
HungnesO
DudmanSG
MeijerA
Paget WJ
2008 Emergence of resistance to oseltamivir among influenza A(H1N1) viruses in Europe Euro Surveill 13
28. DharanNJ
GubarevaLV
MeyerJJ
Okomo-AdhiamboM
McClintonRC
2009 Infections with oseltamivir-resistant influenza A (H1N1) virus in the United States. JAMA 301 1034 1041
29. RussellRJ
HaireLF
StevensDJ
CollinsPJ
LinYP
2006 The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443 45 49
30. GubarevaLV
RobinsonMJ
BethellRC
WebsterRG
1997 Catalytic and framework mutations in the neuraminidase active site of influenza viruses that are resistant to 4-Guanidino-Neu5Ac2en. J Virol 71 3385 3390
31. GubarevaLV
BethellR
HartGJ
MurtiKG
PennCR
1996 Characterization of mutants of influenza A virus selected with the neuraminidase inhibitor 4-guanidino-Neu5Ac2en. J Virol 70 1818 1827
32. AbedY
GayetteN
BoivinG
2004 A reverse genetics study of resistance to neuraminidase inhibitors in an influenza A/H1N1 virus. Antivir Therapy 9 577 581
33. AbedY
NehmeB
BazM
BoivinG
2008 Activity of the neuraminidase inhibitor A-315675 against oseltamivir-resistant influenza neuraminidases of N1 and N2 subtypes. Antivir Res 77 163 166
34. CollinsPJ
HaireLF
LinYP
LiuJ
RussellRJ
2008 Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 453 1258 1261
35. ReumanPD
KeelyS
SchiffGM
1989 Assessment of signs of influenza illness in the ferret model. J Virol Methods 24 27 34
36. MainesTR
ChenLM
MatsuokaY
ChenH
RoweT
2006 Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model. Proc Natl Acad Sci USA 103 12121 12126
37. HoffmannE
NeumannG
KawaokaY
HobomG
WebsterR
2000 97 6108 6113 Proc Natl Acad Sci USA A DNA transfection system for generation of influenza A virus from eight plasmids
38. PotierM
MameliL
BelisleM
DallaireL
MelanxonSB
1979 Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-alpha-D-N-acetylneuraminate) substrate. Anal Biochem 94 287 296
39. MalakhovMP
AschenbrennerLM
SmeeDF
WanderseeMK
SidwellRW
2006 Sialidase fusion protein as a novel broad-spectrum inhibitor of influenza virus infection. Antimicrob Agents Chemother 50 1470 1479
40. PalmerDF
DowdleWR
ColemanMT
SchildGC
1975 Advanced laboratory techniques for influenza diagnosis. U.S. Department of Health, Education, and Welfare, immunology series no. 6. Centers for Disease Control, Atlanta, GA
41. HoffmannE
StechJ
GuanY
WebsterRG
PerezDR
2001 Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146 2275 2289
42. VenablesWN
RipleyBD
1997 Modern Applied Statistics. New York, NY Springer. 223 242, 297-321, 345-350
43. EllemanTC
AzadAA
WardCW
1982 Neuraminidase gene from the early Asia strain of human influenza virus, A/RI/5-/57 H2N1. Nucleic Acids Res, 10 7005 7015
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 5
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Quorum Sensing Inhibition Selects for Virulence and Cooperation in
- The Role of Intestinal Microbiota in the Development and Severity of Chemotherapy-Induced Mucositis
- Susceptibility to Anthrax Lethal Toxin-Induced Rat Death Is Controlled by a Single Chromosome 10 Locus That Includes
- Demonstration of Cross-Protective Vaccine Immunity against an Emerging Pathogenic Ebolavirus Species