Global Migration Dynamics Underlie Evolution and Persistence of Human Influenza A (H3N2)
The global migration patterns of influenza viruses have profound implications for the evolutionary and epidemiological dynamics of the disease. We developed a novel approach to reconstruct the genetic history of human influenza A (H3N2) collected worldwide over 1998 to 2009 and used it to infer the global network of influenza transmission. Consistent with previous models, we find that China and Southeast Asia lie at the center of this global network. However, we also find that strains of influenza circulate outside of Asia for multiple seasons, persisting through dynamic migration between northern and southern regions. The USA acts as the primary hub of temperate transmission and, together with China and Southeast Asia, forms the trunk of influenza's evolutionary tree. These findings suggest that antiviral use outside of China and Southeast Asia may lead to the evolution of long-term local and potentially global antiviral resistance. Our results might also aid the design of surveillance efforts and of vaccines better tailored to different geographic regions.
Vyšlo v časopise:
Global Migration Dynamics Underlie Evolution and Persistence of Human Influenza A (H3N2). PLoS Pathog 6(5): e32767. doi:10.1371/journal.ppat.1000918
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.ppat.1000918
Souhrn
The global migration patterns of influenza viruses have profound implications for the evolutionary and epidemiological dynamics of the disease. We developed a novel approach to reconstruct the genetic history of human influenza A (H3N2) collected worldwide over 1998 to 2009 and used it to infer the global network of influenza transmission. Consistent with previous models, we find that China and Southeast Asia lie at the center of this global network. However, we also find that strains of influenza circulate outside of Asia for multiple seasons, persisting through dynamic migration between northern and southern regions. The USA acts as the primary hub of temperate transmission and, together with China and Southeast Asia, forms the trunk of influenza's evolutionary tree. These findings suggest that antiviral use outside of China and Southeast Asia may lead to the evolution of long-term local and potentially global antiviral resistance. Our results might also aid the design of surveillance efforts and of vaccines better tailored to different geographic regions.
Zdroje
1. World Health Organization 2009 Fact sheet Number 211. Influenza. URL http://www.who.int/mediacentre/factsheets/fs211/en/
2. NelsonMI
SimonsenL
ViboudC
MillerMA
HolmesEC
2007 Phylogenetic analysis reveals the global migration of seasonal influenza A viruses. PLoS Pathog 3 1220 1228
3. RussellCA
JonesTC
BarrIG
CoxNJ
GartenRJ
2008 The global circulation of seasonal influenza A (H3N2) viruses. Science 320 340 346
4. RambautA
PybusOG
NelsonMI
ViboudC
TaubenbergerJK
2008 The genomic and epidemiological dynamics of human influenza A virus. Nature 453 615 619
5. FergusonNM
GalvaniAP
BushRM
2003 Ecological and immunological determinants of influenza evolution. Nature 422 428 433
6. CargillM
AltshulerD
IrelandJ
SklarP
ArdlieK
1999 Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 22 231 238
7. BrownAJ
1997 Analysis of HIV-1 env gene sequences reveals evidence for a low effective number in the viral population. Proc Natl Acad Sci U S A 94 1862 1865
8. NelsonMI
SimonsenL
ViboudC
MillerMA
TaylorJ
2006 Stochastic processes are key determinants of short-term evolution in influenza A virus. PLoS Pathog 2 e125
9. HudsonRR
SlatkinM
MaddisonWP
1992 Estimation of levels of gene flow from DNA sequence data. Genetics 132 583 589
10. ShriverMD
MeiR
ParraEJ
SonparV
HalderI
2005 Large-scale SNP analysis reveals clustered and continuous patterns of human genetic variation. Hum Genomics 2 81 89
11. KingmanJFC
1982 The coalescent. Stochast Proc Appl 13 235 248
12. NotoharaM
1990 The coalescent and the genealogical process in geographically structured population. J Math Biol 29 59 75
13. DrummondAJ
NichollsGK
RodrigoAG
SolomonW
2002 Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161 1307 1320
14. BeerliP
FelsensteinJ
2001 Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci U S A 98 4563 4568
15. HufnagelL
BrockmannD
GeiselT
2004 Forecast and control of epidemics in a globalized world. Proc Natl Acad Sci U S A 101 15124 15129
16. FitchWM
BushRM
BenderCA
CoxNJ
1997 Long term trends in the evolution of H(3) HA1 human influenza type A. Proc Natl Acad Sci U S A 94 7712 7718
17. NelsonMI
HolmesEC
2007 The evolution of epidemic influenza. Nat Rev Genet 8 196 205
18. KoelleK
CobeyS
GrenfellB
PascualM
2006 Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans. Science 314 1898 1903
19. WolfYI
ViboudC
HolmesEC
KooninEV
LipmanDJ
2006 Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biol Direct 1 34
20. BeerliP
2006 Comparison of bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22 341 345
21. MaruyamaT
KimuraM
1980 Genetic variability and effective population size when local extinction and recolonization of subpopulations are frequent. Proc Natl Acad Sci U S A 77 6710 6714
22. BaoY
BolotovP
DernovoyD
KiryutinB
ZaslavskyL
2008 The influenza virus resource at the national center for biotechnology information. J Virol 82 596 601
23. EdgarRC
2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 1792 1797
24. DrummondAJ
RambautA
2007 BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7 214
25. HasegawaM
KishinoH
YanoT
1985 Dating of the human-ape splitting by a molecular clock of mitochondrial dna. J Mol Evol 22 160 174
26. GaniR
HughesH
FlemingD
GriffinT
MedlockJ
2005 Potential impact of antiviral drug use during influenza pandemic. Emerg Infect Dis 11 1355 1362
27. CauchemezS
ValleronAJ
BoellePY
FlahaultA
FergusonNM
2008 Estimating the impact of school closure on influenza transmission from Sentinel data. Nature 452 750 754
28. CarratF
VerguE
FergusonNM
LemaitreM
CauchemezS
2008 Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol 167 775 785
29. SmithDJ
LapedesAS
de JongJC
BestebroerTM
RimmelzwaanGF
2004 Mapping the antigenic and genetic evolution of influenza virus. Science 305 371 376
30. BorgattiS
2005 Centrality and network flow. Social Networks 27 55 71
Štítky
Hygiena a epidemiológia Infekčné lekárstvo LaboratóriumČlánok vyšiel v časopise
PLOS Pathogens
2010 Číslo 5
- Očkování proti virové hemoragické horečce Ebola experimentální vakcínou rVSVDG-ZEBOV-GP
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Koronavirus hýbe světem: Víte jak se chránit a jak postupovat v případě podezření?
Najčítanejšie v tomto čísle
- Quorum Sensing Inhibition Selects for Virulence and Cooperation in
- The Role of Intestinal Microbiota in the Development and Severity of Chemotherapy-Induced Mucositis
- Susceptibility to Anthrax Lethal Toxin-Induced Rat Death Is Controlled by a Single Chromosome 10 Locus That Includes
- Demonstration of Cross-Protective Vaccine Immunity against an Emerging Pathogenic Ebolavirus Species