#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Effective, Broad Spectrum Control of Virulent Bacterial Infections Using Cationic DNA Liposome Complexes Combined with Bacterial Antigens


Protection against virulent pathogens that cause acute, fatal disease is often hampered by development of microbial resistance to traditional chemotherapeutics. Further, most successful pathogens possess an array of immune evasion strategies to avoid detection and elimination by the host. Development of novel, immunomodulatory prophylaxes that target the host immune system, rather than the invading microbe, could serve as effective alternatives to traditional chemotherapies. Here we describe the development and mechanism of a novel pan-anti-bacterial prophylaxis. Using cationic liposome non-coding DNA complexes (CLDC) mixed with crude F. tularensis membrane protein fractions (MPF), we demonstrate control of virulent F. tularensis infection in vitro and in vivo. CLDC+MPF inhibited bacterial replication in primary human and murine macrophages in vitro. Control of infection in macrophages was mediated by both reactive nitrogen species (RNS) and reactive oxygen species (ROS) in mouse cells, and ROS in human cells. Importantly, mice treated with CLDC+MPF 3 days prior to challenge survived lethal intranasal infection with virulent F. tularensis. Similarly to in vitro observations, in vivo protection was dependent on the presence of RNS and ROS. Lastly, CLDC+MPF was also effective at controlling infections with Yersinia pestis, Burkholderia pseudomallei and Brucella abortus. Thus, CLDC+MPF represents a novel prophylaxis to protect against multiple, highly virulent pathogens.


Vyšlo v časopise: Effective, Broad Spectrum Control of Virulent Bacterial Infections Using Cationic DNA Liposome Complexes Combined with Bacterial Antigens. PLoS Pathog 6(5): e32767. doi:10.1371/journal.ppat.1000921
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000921

Souhrn

Protection against virulent pathogens that cause acute, fatal disease is often hampered by development of microbial resistance to traditional chemotherapeutics. Further, most successful pathogens possess an array of immune evasion strategies to avoid detection and elimination by the host. Development of novel, immunomodulatory prophylaxes that target the host immune system, rather than the invading microbe, could serve as effective alternatives to traditional chemotherapies. Here we describe the development and mechanism of a novel pan-anti-bacterial prophylaxis. Using cationic liposome non-coding DNA complexes (CLDC) mixed with crude F. tularensis membrane protein fractions (MPF), we demonstrate control of virulent F. tularensis infection in vitro and in vivo. CLDC+MPF inhibited bacterial replication in primary human and murine macrophages in vitro. Control of infection in macrophages was mediated by both reactive nitrogen species (RNS) and reactive oxygen species (ROS) in mouse cells, and ROS in human cells. Importantly, mice treated with CLDC+MPF 3 days prior to challenge survived lethal intranasal infection with virulent F. tularensis. Similarly to in vitro observations, in vivo protection was dependent on the presence of RNS and ROS. Lastly, CLDC+MPF was also effective at controlling infections with Yersinia pestis, Burkholderia pseudomallei and Brucella abortus. Thus, CLDC+MPF represents a novel prophylaxis to protect against multiple, highly virulent pathogens.


Zdroje

1. ConlanJW

ChenW

ShenH

WebbA

KuoLeeR

2003 Experimental tularemia in mice challenged by aerosol or intradermally with virulent strains of Francisella tularensis: bacteriologic and histopathologic studies. Microb Pathog 34 239 248

2. SaslawS

EigelsbachHT

PriorJA

WilsonHE

CarhartS

1961 Tularemia vaccine study. II. Respiratory challenge. Arch Intern Med 107 702 714

3. SawyerWD

DangerfieldHG

HoggeAL

CrozierD

1966 Antibiotic prophylaxis and therapy of airborne tularemia. Bacteriol Rev 30 542 550

4. CrossJT

JacobsRF

1993 Tularemia: treatment failures with outpatient use of ceftriaxone. Clin Infect Dis 17 976 980

5. OverholtEL

TigerttWD

KadullPJ

WardMK

CharkesND

1961 An analysis of forty-two cases of laboratory-acquired tularemia. Treatment with broad spectrum antibiotics. Am J Med 30 785 806

6. RisiGF

PomboDJ

1995 Relapse of tularemia after aminoglycoside therapy: case report and discussion of therapeutic options. Clin Infect Dis 20 174 175

7. GowenBB

FairmanJ

DowS

TroyerR

WongMH

2009 Prophylaxis with cationic liposome-DNA complexes protects hamsters from phleboviral disease: importance of liposomal delivery and CpG motifs. Antiviral Res 81 37 46

8. KriegAM

Love-HomanL

YiAK

HartyJT

1998 CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J Immunol 161 2428 2434

9. PanchalRG

UlrichRL

BradfuteSB

LaneD

RuthelG

2009 Reduced expression of CD45 protein-tyrosine phosphatase provides protection against anthrax pathogenesis. J Biol Chem 284 12874 12885

10. ChecrounC

WehrlyTD

FischerER

HayesSF

CelliJ

2006 Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci U S A 103 14578 14583

11. ChongA

WehrlyTD

NairV

FischerER

BarkerJR

2008 The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect Immun 76 5488 5499

12. BogdanC

RollinghoffM

DiefenbachA

2000 The role of nitric oxide in innate immunity. Immunol Rev 173 17 26

13. AnthonyLS

MorrisseyPJ

NanoFE

1992 Growth inhibition of Francisella tularensis live vaccine strain by IFN-gamma-activated macrophages is mediated by reactive nitrogen intermediates derived from L-arginine metabolism. J Immunol 148 1829 1834

14. LindgrenH

StenmanL

TarnvikA

SjostedtA

2005 The contribution of reactive nitrogen and oxygen species to the killing of Francisella tularensis LVS by murine macrophages. Microbes Infect 7 467 475

15. LindgrenH

StenmarkS

ChenW

TarnvikA

SjostedtA

2004 Distinct roles of reactive nitrogen and oxygen species to control infection with the facultative intracellular bacterium Francisella tularensis. Infect Immun 72 7172 7182

16. PolsinelliT

MeltzerMS

FortierAH

1994 Nitric oxide-independent killing of Francisella tularensis by IFN-gamma-stimulated murine alveolar macrophages. J Immunol 153 1238 1245

17. ElkinsKL

CowleySC

BosioCM

2007 Innate and adaptive immunity to Francisella. Ann N Y Acad Sci 1105 284 324

18. ChiavoliniD

WeirS

MurphyJR

WetzlerLM

2008 Neisseria meningitidis PorB, a Toll-like receptor 2 ligand, improves the capacity of Francisella tularensis lipopolysaccharide to protect mice against experimental tularemia. Clin Vaccine Immunol 15 1322 1329

19. ColeLE

YangY

ElkinsKL

FernandezET

QureshiN

2009 Antigen-specific B-1a antibodies induced by Francisella tularensis LPS provide long-term protection against F. tularensis LVS challenge. Proc Natl Acad Sci U S A 106 4343 4348

20. DreisbachVC

CowleyS

ElkinsKL

2000 Purified lipopolysaccharide from Francisella tularensis live vaccine strain (LVS) induces protective immunity against LVS infection that requires B cells and gamma interferon. Infect Immun 68 1988 1996

21. FulopM

MancheeR

TitballR

1995 Role of lipopolysaccharide and a major outer membrane protein from Francisella tularensis in the induction of immunity against tularemia. Vaccine 13 1220 1225

22. ThomasRM

TitballRW

OystonPC

GriffinK

WatersE

2007 The immunologically distinct O antigens from Francisella tularensis subspecies tularensis and Francisella novicida are both virulence determinants and protective antigens. Infect Immun 75 371 378

23. ChaseJC

CelliJ

BosioCM

2009 Direct and indirect impairment of human dendritic cell function by virulent Francisella tularensis Schu S4. Infect Immun 77 180 195

24. CowleySC

MyltsevaSV

NanoFE

1996 Phase variation in Francisella tularensis affecting intracellular growth, lipopolysaccharide antigenicity and nitric oxide production. Mol Microbiol 20 867 874

25. SandstromG

SjostedtA

JohanssonT

KuoppaK

WilliamsJC

1992 Immunogenicity and toxicity of lipopolysaccharide from Francisella tularensis LVS. FEMS Microbiol Immunol 5 201 210

26. GoodyearA

KellihanL

Bielefeldt-OhmannH

TroyerR

PropstK

2009 Protection from pneumonic infection with burkholderia species by inhalational immunotherapy. Infect Immun 77 1579 1588

27. TroyerRM

PropstKL

FairmanJ

BosioCM

DowSW

2009 Mucosal immunotherapy for protection from pneumonic infection with Francisella tularensis. Vaccine 27 4424 4433

28. ElkinsKL

BosioCM

Rhinehart-JonesTR

1999 Importance of B cells, but not specific antibodies, in primary and secondary protective immunity to the intracellular bacterium Francisella tularensis live vaccine strain. Infect Immun 67 6002 6007

29. Rozak DA, Gelhaus HC, Smith M, Zadeh M, Huzella L, et al. CpG oligodeoxyribonucleotides protect mice from Burkholderia pseudomallei but not Francisella tularensis Schu S4 aerosols. J Immune Based Ther Vaccines 8 2

30. ZaksK

JordanM

GuthA

SellinsK

KedlR

2006 Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J Immunol 176 7335 7345

31. TakaokaA

WangZ

ChoiMK

YanaiH

NegishiH

2007 DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448 501 505

32. FlakTA

GoldmanWE

1999 Signalling and cellular specificity of airway nitric oxide production in pertussis. Cell Microbiol 1 51 60

33. GoldmanWE

KlapperDG

BasemanJB

1982 Detection, isolation, and analysis of a released Bordetella pertussis product toxic to cultured tracheal cells. Infect Immun 36 782 794

34. O'ReillyT

ZakO

1992 Enhancement of the effectiveness of antimicrobial therapy by muramyl peptide immunomodulators. Clin Infect Dis 14 1100 1109

35. TotemeyerS

SheppardM

LloydA

RoperD

DowsonC

2006 IFN-gamma enhances production of nitric oxide from macrophages via a mechanism that depends on nucleotide oligomerization domain-2. J Immunol 176 4804 4810

36. VogelFR

2000 Improving vaccine performance with adjuvants. Clin Infect Dis 30 Suppl 3 S266 270

37. BosioCM

Bielefeldt-OhmannH

BelisleJT

2007 Active suppression of the pulmonary immune response by Francisella tularensis Schu4. J Immunol 178 4538 4547

38. HallJD

WoolardMD

GunnBM

CravenRR

Taft-BenzS

2008 Infected-host-cell repertoire and cellular response in the lung following inhalation of Francisella tularensis Schu S4, LVS, or U112. Infect Immun 76 5843 5852

39. LopezMC

DuckettNS

BaronSD

MetzgerDW

2004 Early activation of NK cells after lung infection with the intracellular bacterium, Francisella tularensis LVS. Cell Immunol 232 75 85

40. DowSW

FradkinLG

LiggittDH

WillsonAP

HeathTD

1999 Lipid-DNA complexes induce potent activation of innate immune responses and antitumor activity when administered intravenously. J Immunol 163 1552 1561

41. LindgrenH

ShenH

ZingmarkC

GolovliovI

ConlanW

2007 Resistance of Francisella tularensis strains against reactive nitrogen and oxygen species with special reference to the role of KatG. Infect Immun 75 1303 1309

42. CarpenaX

WisemanB

DeemagarnT

HerguedasB

IvancichA

2006 Roles for Arg426 and Trp111 in the modulation of NADH oxidase activity of the catalase-peroxidase KatG from Burkholderia pseudomallei inferred from pH-induced structural changes. Biochemistry 45 5171 5179

43. SebbaneF

JarrettCO

GardnerD

LongD

HinnebuschBJ

2006 Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc Natl Acad Sci U S A 103 5526 5530

44. DingAH

NathanCF

StuehrDJ

1988 Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol 141 2407 2412

45. FortierAH

PolsinelliT

GreenSJ

NacyCA

1992 Activation of macrophages for destruction of Francisella tularensis: identification of cytokines, effector cells, and effector molecules. Infect Immun 60 817 825

46. SchneemannM

SchoedonG

HoferS

BlauN

GuerreroL

1993 Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J Infect Dis 167 1358 1363

47. WeinbergJB

1998 Nitric oxide production and nitric oxide synthase type 2 expression by human mononuclear phagocytes: a review. Mol Med 4 557 591

48. FangFC

2004 Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2 820 832

49. AnnaneD

SanquerS

SebilleV

FayeA

DjuranovicD

2000 Compartmentalised inducible nitric-oxide synthase activity in septic shock. Lancet 355 1143 1148

50. PhamTN

RahmanP

TobinYM

KhraishiMM

HamiltonSF

2003 Elevated serum nitric oxide levels in patients with inflammatory arthritis associated with co-expression of inducible nitric oxide synthase and protein kinase C-eta in peripheral blood monocyte-derived macrophages. J Rheumatol 30 2529 2534

51. BosioCM

ElkinsKL

2001 Susceptibility to secondary Francisella tularensis live vaccine strain infection in B-cell-deficient mice is associated with neutrophilia but not with defects in specific T-cell-mediated immunity. Infect Immun 69 194 203

52. ElkinsKL

Rhinehart-JonesTR

CulkinSJ

YeeD

WinegarRK

1996 Minimal requirements for murine resistance to infection with Francisella tularensis LVS. Infect Immun 64 3288 3293

53. BrettPJ

DeshazerD

WoodsDE

1997 Characterization of Burkholderia pseudomallei and Burkholderia pseudomallei-like strains. Epidemiol Infect 118 137 148

54. BrettPJ

BurtnickMN

SnyderDS

ShannonJG

AzadiP

2007 Burkholderia mallei expresses a unique lipopolysaccharide mixture that is a potent activator of human Toll-like receptor 4 complexes. Mol Microbiol 63 379 390

55. StarrT

NgTW

WehrlyTD

KnodlerLA

CelliJ

2008 Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic 9 678 694

56. GowenBB

FairmanJ

SmeeDF

WongMH

JungKH

2006 Protective immunity against acute phleboviral infection elicited through immunostimulatory cationic liposome-DNA complexes. Antiviral Res 69 165 172

57. ChaseJC

BosioCM

2009 Presence of CD14 overcomes evasion of innate immune responses by virulent Francisella tularensis in human dendritic cells in vitro and pulmonary cells in vivo. Infect Immun

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#