#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Early Stage of Bacterial Genome-Reductive Evolution in the Host


The equine-associated obligate pathogen Burkholderia mallei was developed by reductive evolution involving a substantial portion of the genome from Burkholderia pseudomallei, a free-living opportunistic pathogen. With its short history of divergence (∼3.5 myr), B. mallei provides an excellent resource to study the early steps in bacterial genome reductive evolution in the host. By examining 20 genomes of B. mallei and B. pseudomallei, we found that stepwise massive expansion of IS (insertion sequence) elements ISBma1, ISBma2, and IS407A occurred during the evolution of B. mallei. Each element proliferated through the sites where its target selection preference was met. Then, ISBma1 and ISBma2 contributed to the further spread of IS407A by providing secondary insertion sites. This spread increased genomic deletions and rearrangements, which were predominantly mediated by IS407A. There were also nucleotide-level disruptions in a large number of genes. However, no significant signs of erosion were yet noted in these genes. Intriguingly, all these genomic modifications did not seriously alter the gene expression patterns inherited from B. pseudomallei. This efficient and elaborate genomic transition was enabled largely through the formation of the highly flexible IS-blended genome and the guidance by selective forces in the host. The detailed IS intervention, unveiled for the first time in this study, may represent the key component of a general mechanism for early bacterial evolution in the host.


Vyšlo v časopise: The Early Stage of Bacterial Genome-Reductive Evolution in the Host. PLoS Pathog 6(5): e32767. doi:10.1371/journal.ppat.1000922
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000922

Souhrn

The equine-associated obligate pathogen Burkholderia mallei was developed by reductive evolution involving a substantial portion of the genome from Burkholderia pseudomallei, a free-living opportunistic pathogen. With its short history of divergence (∼3.5 myr), B. mallei provides an excellent resource to study the early steps in bacterial genome reductive evolution in the host. By examining 20 genomes of B. mallei and B. pseudomallei, we found that stepwise massive expansion of IS (insertion sequence) elements ISBma1, ISBma2, and IS407A occurred during the evolution of B. mallei. Each element proliferated through the sites where its target selection preference was met. Then, ISBma1 and ISBma2 contributed to the further spread of IS407A by providing secondary insertion sites. This spread increased genomic deletions and rearrangements, which were predominantly mediated by IS407A. There were also nucleotide-level disruptions in a large number of genes. However, no significant signs of erosion were yet noted in these genes. Intriguingly, all these genomic modifications did not seriously alter the gene expression patterns inherited from B. pseudomallei. This efficient and elaborate genomic transition was enabled largely through the formation of the highly flexible IS-blended genome and the guidance by selective forces in the host. The detailed IS intervention, unveiled for the first time in this study, may represent the key component of a general mechanism for early bacterial evolution in the host.


Zdroje

1. MoranNA

2003 Tracing the evolution of gene loss in obligate bacterial symbionts. Current Opinion in Microbiology 6 512 518

2. MoranNA

MiraA

2001 The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. Genome Biology 2 research0054.0051 0054.0012

3. MoranNA

PlagueGR

2004 Genomic changes following host restriction in bacteria. Current Opinion in Genetics & Development 14 627 633

4. NilssonAI

KoskiniemiS

ErikssonS

KugelbergE

HintonJCD

2005 Bacterial genome size reduction by experimental evolution. Proc Natl Acad Sci U S A 102 12112 12116

5. SallstromB

AnderssonSGE

2005 Genome reduction in the [alpha]-Proteobacteria. Current Opinion in Microbiology 8 579 585

6. BatutJ

AnderssonSGE

O'CallaghanD

2004 The evolution of chronic infection strategies in the [alpha]-proteobacteria. Nat Rev Micro 2 933 945

7. MoranNA

McLaughlinHJ

SorekR

2009 The Dynamics and Time Scale of Ongoing Genomic Erosion in Symbiotic Bacteria. Science 323 379 382

8. MiraA

PushkerR

Rodríguez-ValeraF

2006 The Neolithic revolution of bacterial genomes. Trends in Microbiology 14 200 206

9. ParkhillJ

SebaihiaM

PrestonA

MurphyLD

ThomsonN

2003 Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35 32 40

10. TreangenTJ

AbrahamA-L

TouchonM

RochaEPC

2009 Genesis, effects and fates of repeats in prokaryotic genomes. FEMS Microbiology Reviews 33 539 571

11. DanceD

2000 Ecology of Burkholderia pseudomallei and the interactions between environmental Burkholderia spp. and human-animal hosts. Acta Trop 74 159 168

12. DharakulT

SongsivilaiS

1999 The many facets of melioidosis. Trends Microbiol 7 138 140

13. McGilvrayC

1944 The transmission of glanders from horse to man. Can J Public Health 35 268 275

14. BenensonA

1995 Control of Communicable Diseases Manual Washington, DC American Public Health Association

15. DeShazerD

WaagD

2004 Glanders: New Insights into an Old Disease.

LindlerL

LebedaF

KorchGW

Biological Weapons Defense: Infectious Diseases and Counterbioterrorism The Humana Press Inc 209 237

16. ChengAC

CurrieBJ

2005 Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18 383 416

17. InglisTJJ

SagripantiJL

2006 Environmental factors that affect the survival and persistence of Burkholderia pseudomallei. Appl Environ Microbiol 72 6865 6875

18. GodoyD

RandleG

SimpsonA

AanensenD

PittT

2003 Multilocus sequence typing and evolutionary relationships among the causative agents of Melioidosis and Glanders, Burkholderia pseudomallei and Burkholderia mallei. J Clin Microbiol 41 2068 2079

19. LinCH

BourqueG

TanP

2008 A Comparative Synteny Map of Burkholderia Species Links Large-Scale Genome Rearrangements to Fine-Scale Nucleotide Variation in Prokaryotes. Mol Biol Evol 25 549 558

20. NiermanWC

DeShazerD

KimHS

TettelinH

NelsonKE

2004 Structural flexibility in the Burkholderia genome. Proc Natl Acad Sci USA 101 14246 14251

21. HoldenMTG

TitballRW

PeacockSJ

Cerdeño-TárragaAM

AtkinsT

2004 Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci USA 101 14240 14245

22. WilkinsonL

1981 Glanders: medicine and veterinary medicine in common pursuit of a contagious disease. Med Hist 25 363 384

23. WhitlockGC

EstesDM

TorresAG

2007 Glanders: off to the races with Burkholderia mallei. FEMS Microbiol Lett 277 115 122

24. RomeroC

DeShazerD

FeldblyumT

RavelJ

WoodsD

2006 Genome sequence alterations detected upon passage of Burkholderia mallei ATCC 23344 in culture and in mammalian hosts. BMC Genomics 7 228

25. SchutzerSE

SchlaterLR

RonningCM

DeShazerD

LuftBJ

2008 Characterization of clinically-attenuated Burkholderia mallei by whole genome sequencing: candidate strain for exclusion from Select Agent lists. PLoS ONE 3 e2058

26. DeShazerD

WaagDM

FritzDL

WoodsDE

2001 Identification of a Burkholderia mallei polysaccharide gene cluster by subtractive hybridization and demonstration that the encoded capsule is an essential virulence determinant. Microbial Pathogenesis 30 253 269

27. LevinsonG

GutmanGA

1987 Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4 203 221

28. DeitschKW

LukehartSA

StringerJR

2009 Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Micro 7 493 503

29. MalakootiJ

ElyB

MatsumuraP

1994 Molecular characterization, nucleotide sequence, and expression of the fliO, fliP, fliQ, and fliR genes of Esherichia coli. J Bacteriol 176 189 197

30. ParkhillJ

WrenBW

ThomsonNR

TitballRW

HoldenMTG

2001 Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413 523 527

31. RodriguesF

Sarkar-TysonM

HardingSV

SimS-H

ChuaH-H

2006 Global map of growth-regulated gene expression in Burkholderia pseudomallei, the causative agent of melioidosis. J Bacteriol 188 8178 8188

32. UlrichRL

DeShazerD

2004 Type III secretion: a virulence factor delivery system essential for the pathogenicity of Burkholderia mallei. Infect Immun 72 1150 1154

33. TuanyokA

KimHS

NiermanWC

YuY

DunbarJ

2005 Genome-wide expression analysis of iron regulation in Burkholderia pseudomallei and Burkholderia mallei using DNA microarrays. FEMS Microbiol Lett 252 327 335

34. MooreRA

Reckseidler-ZentenoS

KimH

NiermanB

YuY

2004 Contribution of gene loss to the pathogenic evolution of Burkholderia pseudomallei and Burkholderia mallei. Infect Immun 72 4172 4187

35. KimH

SchellMA

YuY

UlrichRL

SarriaSH

2005 Bacterial genome adaptation to niches: Divergence of the potential virulence genes in three Burkholderia species of different survival strategies. BMC Genomics 6 174

36. FleischmannRD

AdamsMD

WhiteO

ClaytonRA

KirknessEF

1995 Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269 496 512

37. MyersEW

SuttonGG

DelcherAL

DewIM

FasuloDP

2000 A whole-genome assembly of Drosophila. Science 287 2196 2204

38. DelcherAL

PhillippyA

CarltonJ

SalzbergSL

2002 Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 30 2478 2483

39. DelcherAL

HarmonD

KasifS

WhiteO

SalzbergSL

1999 Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27 4636 4641

40. SalzbergSL

DelcherAL

KasifS

WhiteO

1998 Microbial gene identification using interpolated Markov models. Nucleic Acids Res 26 544 548

41. CarverTJ

RutherfordKM

BerrimanM

RajandreamM-A

BarrellBG

2005 ACT: the Artemis comparison tool. Bioinformatics 21 3422 3423

42. SchneiderTD

StephensRM

1990 Sequence logos: a new way to display consensus sequences. Nucl Acids Res 18 6097 6100

43. RoyCJ

HaleM

HartingsJM

PittL

DunihoS

2003 Impact of inhalation exposure modality and particle size on the respiratory deposition of ricin in BALB/c mice. Inhal Toxicol 15 619 638

44. MooreRA

DeShazerD

ReckseidlerS

WeissmanA

WoodsDE

1999 Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother 43 465 470

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#